首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid peroxidation causes the generation of the neurotoxic aldehydes acrolein and 4-hydroxy-trans-2-nonenal (HNE). These products are elevated in neurodegenerative diseases and acute CNS trauma. Previous studies demonstrate that mitochondrial class 2 aldehyde dehydrogenase (ALDH2) is susceptible to inactivation by these alkenals. In the liver and brain another mitochondrial aldehyde dehydrogenase, succinic semialdehyde dehydrogenase (SSADH/ALDH5A1), is present. In this study, we tested the hypothesis that aldehyde products of lipid peroxidation inhibit SSADH activity using the endogenous substrate, succinic semialdehyde (SSA, 50 microM). Acrolein potently inhibited SSADH activity (IC(50)=15 microM) in rat brain mitochondrial preparations. This inhibition was of an irreversible and noncompetitive nature. HNE inhibited activity with an IC(50) of 110 microM. Trans-2-hexenal (HEX) and crotonaldehyde (100 microM each) did not inhibit activity. These data suggest that acrolein and HNE disrupt SSA metabolism and may have subsequent effects on CNS neurochemistry.  相似文献   

2.
A destructive cycle of oxidative stress and mitochondrial dysfunction is proposed in neurodegenerative disease. Lipid peroxidation, one outcome of oxidative challenge, can lead to the formation of 4-hydroxy-2(E)-nonenal (HNE), a lipophilic alkenal that forms stable adducts on mitochondrial proteins. In this study, we characterized the effects of HNE on brain mitochondrial respiration. We used whole rat brain mitochondria and concentrations of HNE comparable to those measured in patients with Alzheimer's disease. Our results showed that HNE inhibited respiration at multiple sites. Complex I-linked and complex II-linked state 3 respirations were inhibited by HNE with IC50 values of approximately 200 microM HNE. Respiration was apparently diminished owing to the inhibition of complex III activity. In addition, complex II activity was reduced slightly. The lipophilicity and adduction characteristics of HNE were responsible for the effects of HNE on respiration. The inhibition of respiration was not prevented by N-acetylcysteine or aminoguanidine. Studies using mitochondria isolated from porcine cerebral cortex also demonstrated an inhibition of complex I- and complex II-linked respiration. Thus, in neurodegenerative disease, oxidative stress may impair mitochondrial respiration through the production of HNE.  相似文献   

3.
Sun L  Luo C  Long J  Wei D  Liu J 《Mitochondrion》2006,6(3):136-142
Acrolein is an air pollutant from cigarette smoking and other pollutions and also a by-product of lipid peroxidation. Studies have demonstrated that acrolein causes cytotoxicity and genotoxicity, including liver damage and death of hepatocytes. However, the toxic effects and the underlying mechanisms of acrolein on mitochondria, especially, on liver mitochondria, have not been well studied. In the present study, we investigated the toxic effects and mechanisms of acrolein on mitochondria isolated from rat liver by examining mitochondrial respiration, dehydrogenases, complex I, II, III, IV and V, permeability transition, and protein oxidation. Acrolein incubation (10-1000 microM, or 0.02-2 micromol/mg protein) with mitochondria caused dose-dependent inhibition of NADH- and succinate-linked mitochondrial respiration chain, change of mitochondrial permeability transition, increase in protein carbonyls, and selective enzyme inhibition of mitochondrial complex I, II, pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, but no effects on mitochondrial complex III, IV, V and malate dehydrogenase. These results suggest that acrolein is a mitochondrial toxin and that mitochondrial dysfunction caused by acrolein may play an important role in acrolein toxicity such as hepatotoxicity and also smoking-related diseases.  相似文献   

4.
Trans-4-oxo-2-nonenal potently alters mitochondrial function   总被引:1,自引:0,他引:1  
Alzheimer disease elevates lipid peroxidation in the brain and data indicate that the resulting lipid-aldehydes are pathological effectors of lipid peroxidation. The disposition of 4-substituted nonenals derived from arachidonate (20:4, n-6) and linoleate (18:2, n-6) oxidation is modulated by their protein adduction targets, their metabolism, and the nature of the 4-substitutent. Trans-4-oxo-2-nonenal (4-ONE) has a higher toxicity in some systems than the more commonly studied trans-4-hydroxy-2-nonenal (HNE). In this work, we performed a structure-function analysis of 4-hydroxy/oxoalkenal upon mitochondrial endpoints. We tested the hypotheses that 4-ONE, owing to a highly reactive nature, is more toxic than HNE and that HNE toxicity is enantioselective. We chose to study freshly isolated brain mitochondria because of the role of mitochondrial dysfunction in neurodegenerative disorders. Whereas there was little effect related to HNE chirality, our data indicate that in the mitochondrial environment, the order of toxic potency under most conditions was 4-ONE>HNE. 4-ONE uncoupled mitochondrial respiration at a concentration of 5μM and inhibited aldehyde dehydrogenase 2 (ALDH2) activity with an IC(50) of approximately 0.5μM. The efficacy of altering mitochondrial endpoints was ALDH2 inhibition>respiration=mitochondrial swelling=ALDH5A inhibition>GSH depletion. Thiol-based alkenal scavengers, but not amine-based scavengers, were effective in blocking the effects of 4-ONE upon respiration. Quantum mechanical calculations provided insights into the basis for the elevated reactivity of 4-ONE>HNE. Our data demonstrate that 4-ONE is a potent effector of lipid peroxidation in the mitochondrial environment.  相似文献   

5.
Oxidative stress has been implicated in the pathogenesis of several neurodegenerative disorders including Alzheimer's disease (AD). Increased lipid peroxidation, decreased levels of polyunsaturated fatty acids, and increased levels of 4-hydroxynonenal (HNE), F(2)-isoprostanes, and F(4)-neuroprostanes are present in the brain in patients with AD. Acrolein, an alpha,beta-unsaturated aldehydic product of lipid peroxidation has been demonstrated to be approximately 100 times more reactive than HNE and is present in neurofibrillary tangles in the brain in AD. We recently demonstrated statistically significant elevated concentrations of extractable acrolein in the hippocampus/parahippocampal gyrus and amygdala in AD compared with age-matched control subjects. Concentrations of acrolein were two to five times those of HNE in the same samples. Treatment of hippocampal cultures with acrolein led to a time- and concentration-dependent decrease in cell survival as well as a concentration-dependent increase in intracellular calcium. In cortical neuron cultures, we now report that acrolein causes a concentration-dependent impairment of glutamate uptake and glucose transport in cortical neuron cultures. Treatment of cortical astrocyte cultures with acrolein led to the same pattern of impairment of glutamate uptake as observed in cortical neuron cultures. Collectively, these data demonstrate neurotoxicity mechanisms of arolein that might be important in the pathogenesis of neuron degeneration in AD.  相似文献   

6.
Reactive alpha,beta-unsaturated aldehydes such as acrolein are major components of common environmental pollutants. As a toxic by-product of lipid peroxidation, acrolein has been implicated as a possible mediator of oxidative damage to cells and tissues in a wide variety of disease states, including atherosclerosis and neurodegenerative and pulmonary diseases. Although acrolein can induce apoptotic cell death in various cell types, the biochemical mechanisms are not understood. This study investigates the implication of the death receptor pathway in acrolein-induced apoptosis. Exposure of Chinese hamster ovary cells to acrolein caused translocation of adaptor protein Fas associated with death domain to the cytoplasmic membrane and caspase-8 activation. Kp7-6, an antagonist of Fas receptor activation, blocked apoptotic events downstream of caspase-8, such as caspase-7 activation and nuclear chromatin condensation. Acrolein activated the cross-talk pathway between the death receptor and mitochondrial pathways. Bid was cleaved to truncated-Bid, which was translocated to mitochondria. Activation of the mitochondrial pathway by acrolein was confirmed by caspase-9 activation. Inhibition of activation of either the Fas receptor or caspase-8 partially decreased acrolein-induced caspase-9 activation. These findings indicate that acrolein activates the Fas receptor pathway, which occurs upstream of the mitochondrial pathway. Caspase-9 activation still occurred despite inhibition of the Fas receptor pathway, suggesting that acrolein could also trigger the mitochondrial pathway independent of the receptor pathway. These findings improve our understanding of mechanisms of toxicity of the reactive aldehyde acrolein, which has widespread implications in multiple disease states which seem to be mediated by oxidative stress and lipid peroxidation.  相似文献   

7.
Jeong MS  Kang JH 《BMB reports》2008,41(9):635-639
Acrolein is a highly reactive by product of lipid peroxidation and individuals with neurodegenerative disorders have been shown to contain elevated concentrations of this molecule in the brain. In the present study, we examined the pattern of neurofilament-L (NF-L) modification elicited by acrolein. When NF-L was incubated with acrolein, protein aggregation occurred in a acrolein concentration-dependent manner. Exposure of NF-L to acrolein also led to the generation of protein carbonyl compounds. Through the addition of free radical scavengers we observed a significant decrease in acrolein-mediated NF-L aggregation. These results indicate that free radicals may be involved in the modification of NF-L by acrolein. In addition, dityrosine crosslink formation was observed in acrolein-mediated NF-L aggregates and these aggregates displayed thioflavin T reactivity, reminiscent of amyloid. This study suggests that acrolein-mediated NF-L aggregation might be closely related to oxidative reactions, thus these reactions may play a critical role in neurodegenerative diseases.  相似文献   

8.
Acrolein induces oxidative stress in brain mitochondria   总被引:4,自引:0,他引:4  
Acrolein, a byproduct of lipid peroxidation, has been shown to inflict significant structural and functional damage to isolated guinea pig spinal cord. Reactive oxygen species (ROS) are thought to mediate such detrimental effects. The current study demonstrates that acrolein can directly stimulate mitochondrial oxidative stress. Specifically, exposure of purified brain mitochondria to acrolein resulted in a dose-dependent increase of ROS and decreases in glutathione content and aconitase activity. This effect was not accompanied by significant intramitochondrial calcium influx or mitochondrial permeability transition, but rather by impaired function of the mitochondrial electron transport system. As well, we detected a significant inhibition of mitochondrial adenine nucleotide translocase (ANT) in the presence of acrolein. This inhibition of ANT likely contributes to acrolein-induced ROS elevation since application of atractyloside, a specific ANT inhibitor, induced significant increase of ROS. We hypothesize that inhibition of ANT may mediate, in part, the acrolein-induced ROS increase in mitochondria.  相似文献   

9.
Oxidative stress may be a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD) Huntington's, and Parkinson's diseases as well as amyotrophic lateral sclerosis. Acrolein is a highly reactive product of lipid peroxidation that is elevated in the brains of persons with AD. This alkenal potentially can react with proteins by Michael addition to alter their structure and function. In the present study, we used electron paramagnetic resonance in conjunction with a protein-specific spin label to monitor synaptosomal membrane protein conformational alterations induced by acrolein. A dose-dependent increased conformational alteration was observed. Consistent with this finding, protein carbonyl levels from protein-bound acrolein were significantly elevated. However, pretreatment of synaptosomes with glutathione ethyl ester (GEE) significantly ameliorated both the conformational alterations and protein carbonyls induced by acrolein. Based on this success, we tested the hypothesis that elevated levels of endogenous glutathione (GSH) would offer protection against acrolein-induced oxidative stress. In-vivo elevation of GSH (215% over control, P<0.04) was produced by i.p. injection of N-acetylcysteine (NAC), a known precursor of GSH. Synaptosomes were treated with vehicle or 2 nM acrolein, the level of this alkenal found in AD brain. In contrast to synaptosomes from control animals, which had significantly increased protein carbonyl levels following addition of 2 nM acrolein, synaptosomes that were isolated from NAC-treated rodents and treated with 2 nM acrolein showed no increased carbonyl levels compared to untreated controls. These results demonstrate protection by increased in-vivo GSH levels against acrolein-induced oxidative stress at levels found in AD brain and are consistent with the notion that methods to increase endogenous GSH levels in neurodegenerative diseases associated with oxidative stress may be promising.  相似文献   

10.
Acrolein (2,3-propenal) is a major indoor and outdoor air pollutant originating largely from tobacco smoke or organic combustion. Given its high reactivity, the adverse effects of inhaled acrolein are likely due to direct interactions with the airway epithelium, resulting in altered epithelial function, but only limited information exists to date regarding the primary direct cellular targets for acrolein. Here, we describe a global proteomics approach to characterize the spectrum of airway epithelial protein targets for Michael adduction in acrolein-exposed bronchial epithelial (HBE1) cells, based on biotin hydrazide labeling and avidin purification of biotinylated proteins or peptides for analysis by LC-MS/MS. Identified protein targets included a number of stress proteins, cytoskeletal proteins, and several key proteins involved in redox signaling, including thioredoxin reductase, thioredoxin, peroxiredoxins, and glutathione S-transferase π. Because of the central role of thioredoxin reductase in cellular redox regulation, additional LC-MS/MS characterization was performed on purified mitochondrial thioredoxin reductase to identify the specific site of acrolein adduction, revealing the catalytic selenocysteine residue as the target responsible for enzyme inactivation. Our findings indicate that these approaches are useful in characterizing major protein targets for acrolein, and will enhance mechanistic understanding of the impact of acrolein on cell biology.  相似文献   

11.
Acrolein is a highly electrophilic alpha, beta-unsaturated aldehyde to which humans are exposed in many situations and has been implicated in neurodegenerative diseases, such as Alzheimer’s disease. Lithium is demonstrated to have neuroprotective and neurotrophic effects in brain ischemia, trauma, neurodegenerative disorders, and psychiatric disorders. Previously we have found that acrolein induced neuronal death in HT22 mouse hippocampal cells. In this study, the effects of lithium on the acrolein-induced neurotoxicity in HT22 cells as well as its mechanism(s) were investigated. We found that lithium protected HT22 cells against acrolein-induced damage by the attenuation of reactive oxygen species and the enhancement of the glutathione level. Lithium also attenuated the mitochondrial dysfunction caused by acrolein. Furthermore, lithium significantly increased the level of phospho-glycogen synthase kinase-3 beta (GSK-3β), the non-activated GSK-3β. Taken together, our findings suggest that lithium is a protective agent for acrolein-related neurotoxicity.  相似文献   

12.
Acrolein is a highly reactive alpha,beta-unsaturated aldehyde, which is a product of lipid peroxidation. It is an environmental pollutant that has been implicated in multiple respiratory diseases. Acrolein is produced by the enzymatic oxidative deamination of spermine by amine oxidase. Oxidation products of polyamines have been involved in the inhibition of cell proliferation, apoptosis, and the inhibition of DNA and protein synthesis. The present study investigates the mechanism of cell death induced by acrolein. Acrolein induced apoptosis through a decrease in mitochondrial membrane potential, the liberation of cytochrome c, the activation of initiator caspase-9, and the activation of the effector caspase-7. However, acrolein inhibited enzymatic activity of the effector caspase-3, although a cleavage of pro-caspase-3 occurred. The activation of caspases-9 and -7 was confirmed by the cleavage of their pro-enzyme form by acrolein. Apoptosis was inhibited by an inhibitor of caspase-9, but not by an inhibitor of caspase-3. The induction of apoptosis by acrolein was confirmed morphologically by the condensation of nuclear chromatin and by the cleavage of the inhibitor of caspase activated DNase (ICAD), which leads to the liberation of CAD that causes DNA fragmentation. These results demonstrate that acrolein causes apoptosis through the mitochondrial pathway.  相似文献   

13.
14.
Acrolein is a highly reactive, α,β-unsaturated aldehyde that is an omnipresent environmental pollutant. Humans are exposed to acrolein in food, vapors of overheated cooking oil, cigarette smoke and by combustion of organic products. Acrolein is a toxic by-product of lipid peroxidation resulting from oxidative stress, which is implicated in pulmonary, cardiac and neurodegenerative diseases. Low dose exposure to toxic compounds often leads to adaptive responses. If the adaptive response does not counteract the adverse exposure, death processes such as apoptosis will eliminate the cell. This study investigates the activation of antiapoptosis survival factors in relation to the induction of cell death by apoptosis, following exposure to low doses of acrolein, in A549 human lung cells. Exposure to acrolein (<15 μM, 30 min) activated the survival factor AKT, which led to phosphorylation of Bad and induction of antiapoptosis proteins cIAP1/2. Acrolein (10–50 μM, 30–60 min) increased reactive oxygen species and caused mitochondrial membrane hyperpolarisation. Inhibition by the antioxidants catalase, polyethylene glycol-catalase, sodium pyruvate and MnTBAP showed that acrolein-induced reactive oxygen species were responsible for mitochondrial membrane hyperpolarisation. Acrolein (3–27 μM, 30–60 min) activated early stage processes in the mitochondrial pathway of apoptosis, such as Bax translocation to mitochondria, cytochrome c release, caspase-9 activation, and translocation of apoptosis-inducing factor to the nucleus. Acrolein (10–50 μM) triggered later stage processes such as activation of caspases-3, -7 and -6, phosphatidylserine externalization and cleavage of poly(ADP)ribose polymerase after longer times (2 h). These events were inhibited by polyethylene glycol-catalase, showing that apoptosis was mediated by overproduction of reactive oxygen species by acrolein. The novel findings show that antiapoptosis processes dominate at low dose (<15 μM)/shorter exposure times to acrolein, whereas proapoptotic processes dominate at higher dose (10–50 μM)/longer exposure times. Acrolein induced apoptosis through the mitochondrial pathway that was mediated by reactive oxygen species.  相似文献   

15.
We have previously shown that acrolein, a lipid peroxidation byproduct, is significantly increased following spinal cord injury in vivo , and that exposure to neuronal cells results in oxidative stress, mitochondrial dysfunction, increased membrane permeability, impaired axonal conductivity, and eventually cell death. Acrolein thus may be a key player in the pathogenesis of spinal cord injury, where lipid peroxidation is known to be involved. The current study demonstrates that the acrolein scavenger hydralazine protects against not only acrolein-mediated injury, but also compression in guinea pig spinal cord ex vivo . Specifically, hydralazine (500 μmol/L to 1 mmol/L) can significantly alleviate acrolein (100–500 μmol/L)-induced superoxide production, glutathione depletion, mitochondrial dysfunction, loss of membrane integrity, and reduced compound action potential conduction. Additionally, 500 μmol/L hydralazine significantly attenuated compression-mediated membrane disruptions at 2 and 3 h following injury. This was consistent with our findings that acrolein-lys adducts were increased following compression injury ex vivo , an effect that was prevented by hydralazine treatment. These findings provide further evidence for the role of acrolein in spinal cord injury, and suggest that acrolein-scavenging drugs such as hydralazine may represent a novel therapy to effectively reduce oxidative stress in disorders such as spinal cord injury and neurodegenerative diseases, where oxidative stress is known to play a role.  相似文献   

16.
Increasing evidence supports a role for oxidative DNA damage in aging and several neurodegenerative diseases including Alzheimer's disease (AD). Attack of DNA by reactive oxygen species (ROS), particularly hydroxyl radicals, can lead to strand breaks, DNA–DNA and DNA–protein cross-linking, and formation of at least 20 modified bases adducts. In addition, α,β-unsaturated aldehydic by-products of lipid peroxidation including 4-hydroxynonenal and acrolein can interact with DNA bases leading to the formation of bulky exocyclic adducts. Modification of DNA bases by direct interaction with ROS or aldehydes can lead to mutations and altered protein synthesis. Several studies of DNA base adducts in late-stage AD (LAD) brain show elevations of 8-hydroxyguanine (8-OHG), 8-hydroxyadenine (8-OHA), 5-hydroxycytosine (5-OHC), and 5-hydroxyuracil, a chemical degradation product of cytosine, in both nuclear and mitochondrial DNA (mtDNA) isolated from vulnerable regions of LAD brain compared to age-matched normal control subjects. Previous studies also show elevations of acrolein/guanine adducts in the hippocampus of LAD subjects compared to age-matched controls. In addition, studies of base excision repair show a decline in repair of 8-OHG in vulnerable regions of LAD brain. Our recent studies show elevated 8-OHG, 8-OHA, and 5,6-diamino-5-formamidopyrimidine in both nuclear and mtDNA isolated from vulnerable brain regions in amnestic mild cognitive impairment, the earliest clinical manifestation of AD, suggesting that oxidative DNA damage is an early event in AD and is not merely a secondary phenomenon.  相似文献   

17.
Acrolein, a byproduct of oxidative stress and lipid peroxidation, has been implicated in neurodegenerative disorders such as Alzheimer's disease, but not in spinal cord trauma, as a possible key factor in neuronal degeneration. Using an isolated guinea pig spinal cord model, we have found that acrolein, in a dose- and time-dependent manner, inflicts severe membrane disruption, a factor thought to be critical in triggering axonal deterioration and cell death. The concentration threshold of such detrimental effect is shown to be around 1 microM when acrolein was exposed for 4 h. The membrane damage is likely mediated in part by reactive oxygen species and lipid peroxidation, which were elevated in response to acrolein exposure. Antioxidants were able to significantly reduce acrolein-mediated membrane disruption which further supports the role of reactive oxygen species in the loss of membrane integrity. Mitochondrial function was also impaired after acrolein exposure which not only implicates but emphasizes the role of this organelle in reactive oxygen species generation. In summary, our data strongly suggest that at a clinically relevant concentration, acrolein can severely compromise membrane integrity and may further serve as an initiating toxin triggering secondary injury cascades following the initial physical insult to the spinal cord.  相似文献   

18.
Peroxynitrite and Brain Mitochondria: Evidence for Increased Proton Leak   总被引:5,自引:0,他引:5  
Abstract: Peroxynitrite has been reported to inhibit irreversibly mitochondrial respiration. Here we show that three sequential additions of 200 µ M peroxynitrite (initial concentration) to rat brain mitochondria (0.2 mg of protein/ml) significantly stimulated state 4 respiration and that further additions progressively inhibited it. No stimulation of state 3 respiration or of the maximal enzymatic activities of the respiratory chain complexes was observed on identical peroxynitrite exposure. State 4 respiration is a consequence of the proton permeability of the mitochondrial inner membrane, and we demonstrate that the peroxynitrite-induced stimulation of state 4 respiration is accompanied by a decreased mitochondrial membrane potential, suggesting an increase in this proton leak. Cyclosporin A did not affect the stimulation, suggesting no involvement of the mitochondrial permeability transition pore. The stimulation was prevented by the lipid-soluble vitamin E analogue Trolox, suggesting the involvement of lipid peroxidation, a proposed mechanism of peroxynitrite cytotoxicity. Lipid peroxidation has previously been reported to increase membrane bilayer proton permeability. The high polyunsaturate content of brain mitochondrial phospholipids may predispose them to peroxidation, and thus a peroxynitrite-induced, lipid peroxidation-mediated increase in proton leak may apply particularly to brain mitochondria and to certain neurodegenerative disorders thought to proceed via mechanisms of mitochondrial oxidative damage.  相似文献   

19.
TRAIL resistance in many cancer cells is one of the major problems in TRAIL-based cancer therapy. Thus, the agents that can sensitize the tumor cells to TRAIL-mediated apoptosis are strictly needed for the improvement of anti-cancer effect of TRAIL. Acrolein is a byproduct of lipid peroxidation, which has been involved in pulmonary, cardiac and neurodegenerative diseases. We investigated whether acrolein, an α,β-unsaturated aldehyde, can potentiate TRAIL-induced apoptosis in human renal cancer cells. The combined treatment with acrolein and TRAIL significantly induced apoptosis, and stimulated of caspase-3 activity, DNA fragmentation, and cleavage of PARP. We found that acrolein down-regulated the protein level of Bcl-2 and Bcl-2 overexpression inhibited the cell death induced by the combined treatment with acrolein and TRAIL. In addition, acrolein up-regulated C/EBP homologous protein (CHOP) and TRAIL death receptor 5 (DR5) and down-regulation of CHOP or DR5 expression using the respective small interfering RNA significantly attenuated the apoptosis induced by acrolein plus TRAIL. Interestingly, pretreatment with an antioxidant, N-acetylcysteine (NAC), inhibited not only CHOP and DR5 up-regulation but also the cell death induced by acrolein plus TRAIL. Taken together, our results demonstrated that acrolein enhances TRAIL-induced apoptosis in Caki cells through down-regulation of Bcl-2 and ROS dependent up-regulation of DR5.  相似文献   

20.
Acrolein is a reactive lipid peroxidation byproduct, which is found in ischemic tissue. We examined the effects of acrolein on cytosolic aspartate aminotransferase (cAAT), which is an enzyme that was previously shown to be inhibited by glycating agents. cAAT is thought to protect against ischemic injury. We observed that acrolein cross-linked cAAT subunits as evidenced by the presence of high molecular weight bands following SDS-PAGE. Acrolein-modified cAAT resisted thermal denaturation when compared with native cAAT. We also observed a decrease in intrinsic fluorescence (290 nm, ex; 380 nm, em). These observations are consistent with an acrolein-induced change in conformation that is more rigid and compact than native cAAT, suggesting that intramolecular cross-links occurred. Acrolein also inhibited activity, and the inhibition of enzyme activity correlated with the acrolein-induced formation of cAAT cross-links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号