首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reported previously (Horowitz, J. A., Toeg, H., and Orr, G. A. (1984) J. Biol. Chem. 259, 832-838) that most of the type II cAMP-dependent protein kinases in rat sperm are associated with the flagellum. We have now identified flagellar polypeptides which are capable of forming tight complexes with the regulatory subunit of type II cAMP-dependent protein kinase (RII). Flagellar RII-binding polypeptides were identified using an RII overlay/immunoblot procedure and had apparent subunit Mr of 120,000, 80,000, and 57,000 in rat and 120,000 and 57,000 in bovine flagella. RII is released from the flagellum by disulfide reducing agents, e.g. 1 mM dithiothreitol (DTT). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie Blue staining of the DTT-released material shows that a limited subpopulation of flagellar polypeptides are solubilized by disulfide-reducing agents. Neither tubulin, the dynein ATPase, or any of the RII-binding proteins are released by 1 mM DTT, and thin section electron microscopy revealed that the morphology of the flagellum is unaltered by reducing conditions. Our data established that RII is not linked to the flagellum via a direct disulfide bridge. We propose that RII is released from the flagellum, a highly disulfide cross-linked structure, due to structural changes in the flagellum which disrupts the interaction between RII and its binding proteins.  相似文献   

2.
Identification of a protein in the fibrous sheath of the sperm flagellum   总被引:2,自引:0,他引:2  
The fibrous sheath is a unique cytoskeletal component in the principal-piece segment of the mammalian sperm flagellum. Monoclonal antibody ATC was shown by indirect immunofluorescence (IIF) to bind to the principal piece of the flagellum of permeabilized mouse, rat, and hamster sperm, but not to that region of guinea pig, rabbit, or human sperm. IIF on isolated fibrous sheaths confirmed that the antigen was present in the fibrous sheath of mouse, rat, and hamster sperm. On Western blots of mouse spermatozoa, ATC identified a relatively insoluble major antigen with an apparent molecular weight of 67,000 (Mr 67,000). Hamster sperm fibrous sheaths contain an antigen of Mr 66,000, while rat sperm fibrous sheaths contain an antigen of Mr 65,500. The antigen was first detected in late spermatids, as determined by immunohistochemical procedures on sections of mouse, rat, and hamster testis. The antigen was not detected on Western blots of mouse brain, kidney, liver, or thymus. These results indicate that ATC recognizes a protein integral to the fibrous sheath of the principal piece of sperm detected by immunohistochemistry late in spermiogenesis that is probably restricted to the male germ cell line.  相似文献   

3.
The mammalian flagellum is a specific type of motile cilium required for sperm motility and male fertility. Effective flagellar movement is dependent on axonemal function, which in turn relies on proper ion homeostasis within the flagellar compartment. This ion homeostasis is maintained by the concerted function of ion channels and transporters that initiate signal transduction pathways resulting in motility changes. Advances in electrophysiology and super-resolution microscopy have helped to identify and characterize new regulatory modalities of the mammalian flagellum. Here, we discuss what is currently known about the regulation of flagellar ion channels and transporters that maintain sodium, potassium, calcium, and proton homeostasis. Identification of new regulatory elements and their specific roles in sperm motility is imperative for improving diagnostics of male infertility.  相似文献   

4.
Bull sperm that had been extracted with 0.2% Triton X-100 could be reactivated with ATP, and their movement closely resembled the motion of intact live sperm. Their motility required the presence of ATP, magnesium, and a medium of suitable salt concentration and pH. When Triton-extracted bull sperm were digested breifly with trypsin at pH 9.0, they appeared to reatin most of their normal structure, but subsequent exposure of the digested sperm to ATP caused a disintegration by light microscopy, using dark-field illumination, combined with an electron microscope study of preparations of the disintegrated sperm, demonstrated the presence of an active sliding mechanism of filament interaction in bull spermatozoa. Human sperm subjected to the same procedures showed similar patterns of reactivation and of disintegration.  相似文献   

5.
6.
Proteomic profiling of accessory structures from the mouse sperm flagellum   总被引:2,自引:0,他引:2  
The flagellum of a mammalian spermatozoon consists of an axoneme surrounded in distinct regions by accessory structures known as the fibrous sheath, outer dense fibers, and the mitochondrial sheath. Although the characterization of individual proteins has provided clues about the roles of these accessory structures, a more complete understanding of flagellar function requires the identification of all the polypeptides in these assemblies. Epididymal mouse sperm were treated with SDS to dislodge sperm heads and to extract the axoneme and membranous elements. The remaining flagellar accessory structures were purified by sucrose gradient centrifugation. Analysis of proteins from these structures by two-dimensional gel electrophoresis and colloidal Coomassie Blue staining showed a highly reproducible pattern of >200 spots. Individual spots were picked, digested with trypsin, and identified by mass spectrometry and peptide microsequencing. Approximately 50 individual proteins were identified that could be assigned to five general categories: 1) proteins previously reported to localize to the accessory structures, e.g. ODF2 in the outer dense fibers, the sperm-specific glyceraldehyde-3-phosphate dehydrogenase in the fibrous sheath, and glutathione peroxidase in the mitochondrial sheath, validating this proteomic approach; 2) proteins that had not been shown to localize to any accessory structure but would be predicted to be present, e.g. glycolytic enzymes; 3) proteins known to be part of the flagellum but not localized to a specific site, e.g. adenylate kinase; 4) proteins not expected to be part of the accessory structures based on their previously reported locations, e.g. tektins; and 5) unknown proteins for which no information is available to make a determination as to location. The unexpected presence of the tektins in the accessory structures of the flagellum was confirmed by both immunoblot and immunofluorescence analysis. This proteomic analysis identified a number of unexpected and novel proteins in the accessory structures of the mammalian flagellum.  相似文献   

7.
The assembly of sperm flagella involves specific components and processes that are still poorly defined. Several morphological defects of the different structures that compose the axoneme have been described and associated to human male infertility. These morphological defects can be classified in 15 main categories. Most of them have been associated to consanguinity and/or familial cases, suggesting their genetic origin. However, so far only few genes have been causally involved.  相似文献   

8.
9.
To perform their multiple functions, cilia and flagella are precisely positioned at the cell surface by mechanisms that remain poorly understood. The protist Trypanosoma brucei possesses a single flagellum that adheres to the cell body where a specific cytoskeletal structure is localised, the flagellum attachment zone (FAZ). Trypanosomes build a new flagellum whose distal tip is connected to the side of the old flagellum by a discrete structure, the flagella connector. During this process, the basal body of the new flagellum migrates towards the posterior end of the cell. We show that separate inhibition of flagellum assembly, base-to-tip motility or flagella connection leads to reduced basal body migration, demonstrating that the flagellum contributes to its own positioning. We propose a model where pressure applied by movements of the growing new flagellum on the flagella connector leads to a reacting force that in turn contributes to migration of the basal body at the proximal end of the flagellum.  相似文献   

10.
Profile of a mammalian sperm receptor   总被引:19,自引:0,他引:19  
Complementary molecules on the surface of eggs and sperm are responsible for species-specific interactions between gametes during fertilization in both plants and animals. In this essay, several aspects of current research on the mouse egg receptor for sperm, a zona pellucida glycoprotein called ZP3, are addressed. These include the structure, synthesis, and functions of the sperm receptor during oogenesis and fertilization in mice. Several conclusions are drawn from available information. These include (I) ZP3 is a member of a unique class of glycoproteins found exclusively in the extracellular coat (zona pellucida) of mammalian eggs. (II) ZP3 gene expression is an example of oocyte-specific and, therefore, sex-specific gene expression during mammalian development. (III) ZP3 is a structural glycoprotein involved in assembly of the egg extracellular coat during mammalian oogenesis. (IV) ZP3 is a sperm receptor involved in carbohydrate-mediated gamete recognition and adhesion during mammalian fertilization. (V) ZP3 is an inducer of sperm exocytosis (acrosome reaction) during mammalian fertilization. (VI) ZP3 participates in the secondary block to polyspermy following fertilization in mammals. (VII) The extracellular coat of other mammalian eggs contains a glycoprotein that is functionally analogous to mouse ZP3. The unique nature, highly restricted expression, and multiple roles of ZP3 during mammalian development make this glycoprotein a particularly attractive subject for investigation at both the cellular and molecular levels.  相似文献   

11.
12.
Ca2+ spikes in the flagellum control chemotactic behavior of sperm   总被引:2,自引:0,他引:2       下载免费PDF全文
The events that occur during chemotaxis of sperm are only partly known. As an essential step toward determining the underlying mechanism, we have recorded Ca2+ dynamics in swimming sperm of marine invertebrates. Stimulation of the sea urchin Arbacia punctulata by the chemoattractant or by intracellular cGMP evokes Ca2+ spikes in the flagellum. A Ca2+ spike elicits a turn in the trajectory followed by a period of straight swimming ('turn-and-run'). The train of Ca2+ spikes gives rise to repetitive loop-like movements. When sperm swim in a concentration gradient of the attractant, the Ca2+ spikes and the stimulus function are synchronized, suggesting that precise timing of Ca2+ spikes controls navigation. We identified the peptide asterosap as a chemotactic factor of the starfish Asterias amurensis. The Ca2+ spikes and swimming behavior of sperm from starfish and sea urchin are similar, implying that the signaling pathway of chemotaxis has been conserved for almost 500 million years.  相似文献   

13.
14.
A-kinase anchoring proteins (AKAPs) tether cyclic AMP-dependent protein kinases and thereby localize phosphorylation of target proteins and initiation of signal-transduction processes triggered by cyclic AMP. AKAPs can also be scaffolds for kinases and phosphatases and form macromolecular complexes with other proteins involved in signal transduction. Akap4 is transcribed only in the postmeiotic phase of spermatogenesis and encodes the most abundant protein in the fibrous sheath, a novel cytoskeletal structure present in the principal piece of the sperm flagellum. Previous studies indicated that cyclic AMP-dependent signaling processes are important in the regulation of sperm motility, and gene targeting was used here to test the hypothesis that AKAP4 is a scaffold for protein complexes involved in regulating flagellar function. Sperm numbers were not reduced in male mice lacking AKAP4, but sperm failed to show progressive motility and male mice were infertile. The fibrous sheath anlagen formed, but the definitive fibrous sheath did not develop, the flagellum was shortened, and proteins usually associated with the fibrous sheath were absent or substantially reduced in amount. However, the other cytoskeletal components of the flagellum were present and appeared fully developed. We conclude that AKAP4 is a scaffold protein required for the organization and integrity of the fibrous sheath and that effective sperm motility is lost in the absence of AKAP4 because signal transduction and glycolytic enzymes fail to become associated with the fibrous sheath.  相似文献   

15.
A quantitative ultrastructural study was performed on 56 ejaculates showing anomalies of the sperm axonemal complex. The anomalies comprised either the absence of one, or more often several, axonemal structures, or defective elongation of the doublets. Several characteristics relating to the extent and superimposition of the various anomalies could be described and enabled the definition of 6 groups of anomalies. In decreasing order of frequency these were: absence of the doublets and peripheral junctions, absence of the central complex, of the outer dynein arms, of the central junctions, of both dynein arms, and absence of the inner dynein arms and peripheral junctions. Some anomalies caused total immobility, whereas others caused abnormal movement patterns. Abnormalities of the peri-axonemal structures were found in each group. The various light microscopic characteristics of each of the 6 groups represented 6 seminal profiles which should permit their detection during a routine semen analysis. Several specific associations of axonemal and/or peri-axonemal anomalies would suggest some morphogenetic links between them. Relationships between the absence of doublets or the absence of the central complex and disturbances of microtubular polymerization are discussed. Finally, the study has provided new data on the composition of the axoneme.  相似文献   

16.
Profile of a mammalian sperm receptor gene   总被引:5,自引:0,他引:5  
  相似文献   

17.
18.
19.
Proper sperm function depends on adequate ATP levels. In the mammalian flagellum, ATP is generated in the midpiece by oxidative respiration and in the principal piece by glycolysis. In locations where ATP is rapidly utilized or produced, adenylate kinases (AKs) maintain a constant adenylate energy charge by interconverting stoichiometric amounts of ATP and AMP with two ADP molecules. We previously identified adenylate kinase 1 and 2 (AK1 and AK2) by mass spectrometry as part of a mouse SDS-insoluble flagellar preparation containing the accessory structures (fibrous sheath, outer dense fibers, and mitochondrial sheath). A germ cell-specific cDNA encoding AK1 was characterized and found to contain a truncated 3' UTR and a different 5' UTR compared to the somatic Ak1 mRNA; however, it encoded an identical protein. Ak1 mRNA was upregulated during late spermiogenesis, a time when the flagellum is being assembled. AK1 was first seen in condensing spermatids and was associated with the outer microtubular doublets and outer dense fibers of sperm. This localization would allow the interconversion of ATP and ADP between the fibrous sheath where ATP is produced by glycolysis and the axonemal dynein ATPases where ATP is consumed. Ak2 mRNA was expressed at relatively low levels throughout spermatogenesis, and the protein was localized to the mitochondrial sheath in the sperm midpiece. AK1 and AK2 in the flagellar accessory structures provide a mechanism to buffer the adenylate energy charge for sperm motility.  相似文献   

20.
A number of plasma membrane receptor types originally thought to be specific to neurons have been found in other somatic cells. More surprisingly, the mammalian sperm and neuron appear to share many of these 'neuronal' receptors. The morphology, chromosome number, genomic activity, and functions of those two cell types are as unlike as any two cells in the body, but they both achieve their highly disparate goals with the aid of a number of the same receptors. Exocytosis in neurons and sperm is essential to the functions of these cells and is strongly influenced by similar receptors. 'Neuronal' receptor types in sperm may also play a role in the control of sperm motility (a function of course not shared by neurons). This review will consider the evidence for the presence of sperm plasma membrane 'neuronal' receptors and for their significance to mammalian sperm function. The persuasiveness of the evidence varies depending on the receptor being considered, but there is strong experimental support for the presence and importance of a number of 'neuronal' receptors in sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号