首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D-Glucose is the major substrate for energy metabolism in peripheral nerve. The mechanism of transfer of glucose across the blood-nerve barrier is unclarified. In this study an in situ perfusion technique was utilized, in anesthetized rats, to examine monosaccharide transport from blood into peripheral nerve. Unidirectional influxes of D-[14C]glucose, L-[14C]glucose, and [14C]3-O-methyl-D-glucose across capillaries of the tibial nerve were measured at different perfusate concentrations of unlabelled D-glucose. The permeability-surface area product (PA) for D-[14C]glucose and [14C]3-O-methyl-D-glucose decreased, whereas the PA for L-[14C]glucose remained constant, as the perfusate concentration of D-glucose was increased. In the presence of no added unlabelled D-glucose in the perfusate, the PA for L-[14C]glucose equaled one-fifth the PA for D-[14C]glucose. These results demonstrate self-saturation, competitive inhibition, and stereospecificity of glucose transfer, and for the first time show a unidirectional facilitated transport mechanism for D-monosaccharides at capillaries of mammalian peripheral nerve. The data were fit to a model for facilitated transport and passive diffusion. The half-saturation constant and maximal rate of transport for the saturable component of D-glucose influx equaled 23 +/- 11 mumol X ml-1 and 6.6 +/- 3.2 X 10(-3) mumol X s-1 X g-1, respectively. The constant of nonsaturable glucose influx equaled 0.5 +/- 0.1 X 10(-4) s-1. At normal plasma glucose concentrations, the saturable component comprises about 80% of total D-glucose influx into nerve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Abstract: The permeability of the blood-nerve barrier (BNB) and the blood-brain barrier (BBB) to superoxide dismutase (SOD), insulin, albumin, and IgG in normal adult rats was quantified by measuring the permeability coefficient-surface area product (PS) with the intravenous bolus injection technique before and after covalent protein modification with the naturally occurring polyamines—putrescine (PUT), spermidine (SPD), and spermine (SPM). The PS value of the BNB for PUT-SOD was 21.1-fold greater than the native SOD, and the PS values of the BBB for PUT-SOD ranged from 17.6-fold greater for the thalamus to 23.6-fold greater for the caudate-putamen compared with native SOD. In a similar manner, polyamine-modified insulin showed a 1.7–2.0-fold increase in PS of the BNB and BBB compared with the high values of native insulin. Polyamine-modified albumin showed a remarkable 54–165-fold increase in PS of the BNB and BBB compared with native albumin, whereas PUT-IgG resulted in an even higher increase in the PS that ranged from 111- to 349-fold for nerve and different brain regions compared with native IgG. Polyamine modification of proteins, therefore, can dramatically increase the permeability at the BNB and BBB of a variety of proteins with widely differing Mr and function. It is surprising that the PS values of the BNB and BBB decreased with the increasing number of positive charges of the protonated amino groups on the polyamines (PUT > SPD > SPM). Although cationic proteins are known to interact with fixed anionic charges on the lumen of the microvascular endothelium, this observation of decreased permeability with increased positive charge distribution along the aliphatic carbon chain of the polyamines implies mechanisms other than simple electrostatic interaction involving charge density. It is suggested that the polyamine transporter may be responsible for the transport of these polyamine-modified proteins. Systemic administration of polyamine-modified peptides and proteins might prove to be an efficient approach to deliver therapeutic agents into the CNS and PNS for the treatment of a variety of neurological diseases.  相似文献   

3.
Abstract: Our previous studies have demonstrated that modification of superoxide dismutase (SOD) with the naturally occurring polyamines—putrescine (PUT), spermidine, and spermine—dramatically increases the permeability-coefficient surface area (PS) product at the blood-brain barrier and blood-nerve barrier after parenteral administration. Because of this increased permeability, the efficient delivery of polyamine-modified SOD (pSOD) across these barriers may enhance its therapeutic usefulness in treating ischemic neuronal degeneration, neurodegenerative disease, or even aging as an important antioxidant therapeutic strategy. Because PUT-SOD had the highest PS values, SOD was modified in the present experiments by activating carboxylic acid groups to the reactive ester with water-soluble carbodiimide and then reacted with PUT as the nucleophilic reagent. Preservation of SOD enzyme activity while maximizing the permeability was accomplished by adjusting the ionization of the protein carboxylic acid with pH. Both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing analyses demonstrated graded conversion of SOD to its polyamine-modified derivative when performed at different pH. Although modification at pH 4.7 resulted in only 6.6% retained SOD activity and the highest PS value (43.35 ± 3.81 × 10?6 ml/g/s for the hippocampus), modification at pH 5.7 resulted in 50.1% retained activity with a PS value of 24.48 ± 1.30 × 10?6 ml/g/s for nerve endoneurium and 21.95 ± 1.62 × 10?6 ml/g/s for hippocampus. This contrasts with a PS of 1.8–3.2 × 10?6 ml/g/s for native SOD in nerve and various brain regions. Reaction conditions are therefore defined that titrate enzyme activity of PUT-SOD with PS changes in the intact animal after intravenous administration. These studies will allow an evaluation of the therapeutic usefulness of pSOD in animal models of neuronal degeneration.  相似文献   

4.
The effect of retrograde axonal transport of doses of acrylamide ranging from 50 to 500 mg/kg was studied in sensory nerve of rats. Accumulation of trichloroacetic acid-phosphotungstic acid-insoluble label was measured in a collection segment distal to a double ligature placed on the sciatic nerve at intervals 9-15 h and 9-24 h following injection into the dorsal root ganglion of the fifth lumbar root of [35S]methionine and [3H]fucose. After a dose of 100 mg/kg of acrylamide no neurological signs of neuropathy had yet appeared, but retrograde buildup of protein label was significantly reduced for the long interval (2.20 +/- 0.49 arbitrary units (AU) (mean +/- SD) versus 2.81 +/- 0.57 AU in controls, 2p = 0.034). No abnormality of the short interval appeared before a dose of 500 mg/kg was reached. The retrograde transport abnormality was dose-related (r = -0.85, n = 28, and 2p = 1.2 x 10(-8)), as was the degree of neuropathy evaluated by "blind" neurological scoring (r = 0.88, n = 14, and 2p = 2.8 x 10(-5)). After a dose of 500 mg/kg, when the rats were severely disabled with almost total incoordination of the hindlegs, the retrograde accumulation of the long interval was profoundly depressed (1.08 +/- 0.28 AU versus 2.81 +/- 0.57 AU in controls, 2p = 1.2 x 10(-7)). Similar changes were seen in accumulation of glycoprotein label. After the rats had recovered for 4-10 weeks neurological signs of neuropathy had disappeared and the transport abnormality had improved. To test the specificity of acrylamide on the retrograde transport defect N-hydroxymethylacrylamide and methylene-bisacrylamide, which do not induce neuropathy, were studied. None of these related compounds influenced the transport. These observations imply that in acrylamide intoxication a defect in the amount of material carried by retrograde axonal transport rather than in "turnaround" time or in transport velocity is present, that the transport abnormality precedes the development of neuropathy, and that it is related to the degree of the neurological disability. We suggest that the retention of protein in the distal axons in the functional counterpart of the well-known accumulation of vesicular organelles in the preterminals.  相似文献   

5.
Anterograde Axonal Transport in Rats During Intoxication with Acrylamide   总被引:1,自引:4,他引:1  
Abstract: Anterograde axonal transport was examined in sensory nerves of rats intoxicated with a low dose (group I) or a high dose (group II) of acrylamide. After injection of either [35S]methionine and [3H]fucose or [3H]proline into the dorsal root ganglia of the 5th lumbar roots, distribution of protein label was measured in 3-mm segments of the sciatic nerve at intervals of 2 h, 4 h, 10 days, and 26 days. No difference in ganglion incorporation was present at 4 h, and the fast transport velocity of methionine label also remained normal [14.7 ± 1.3 mm/h (mean ± SD) in controls versus 14.6 ± 0.3 mm/h and 15.4 ± 1.2 mm/h in acrylamide group I and II, respectively]. Neither was there any decrease in transport velocity of proline label of slow component b (4.18 ± 0.29 mm/day in controls versus 4.29 ± 0.17 mm/d and 4.22 ± 0.29 mm/day in acrylamide group I and II, respectively). In slow component a, however, a significant reduction in the fractional amount of proline label was found (20.8 ± 4.0% in controls versus 17.6 ± 14.9% and 9.7 ± 5.9% in acrylamide group I and II, respectively). Again no decrease in transport velocity was observed (1.03 ± 0.02 mm/day in controls versus 1.06 ± 0.08 mm/day and 1.07 ± 0.03 mm/day in acrylamide group I and II, respectively), and closer inspection of the activity along the nerve did not reveal any alteration in skewness or ‘peakedness’ of the distribution curve. The reduction in amount of protein carried in the slow axonal transport component in rats with severe acrylamide neuropathy (group II) could be associated with fibre breakdown at a late stage of the neuropathic process. The most important consequence of the study is, however, that in contrast to previous suggestions, during acrylamide intoxication no changes are present in protein incorporation or in anterograde axonal transport which can explain the initial pathological or functional abnormalities of the distal axons.  相似文献   

6.
Transport of GABA at the Blood-CSF Interface   总被引:2,自引:1,他引:1  
Abstract: The entry of GABA into cerebrospinal fluid (CSF) was studied in dogs anesthetized with pentobarbital and relaxed with suxamethonium. GABA was administered intravenously as a priming dose and subsequent maintenance infusion to compensate for the rapid elimination of the amino acid. Steady state concentrations of GABA in CSF were reached between 10 and 60 min after injection, the rate of entry tending to decrease with increasing plasma levels. During steady state conditions CSF concentrations showed great interin-dividual differences and varied between 0.03 and 5.1% of those in plasma. Probenecid and sodium valproate considerably enhanced the CSF/plasma concentration ratio of GABA. When GABA was directly injected into the liquor space, probenecid slowed down the elimination of GABA from CSF. The results suggest a transport of GABA into and out of CSF, the outward transport being inhibited by probenecid and sodium valproate.  相似文献   

7.
Abstract: The mechanism of unidirectional transport of sodium from blood to brain in pentobarbital-anesthetized rats was examined using in situ perfusion. Sodium transport followed Michaelis-Menten saturation kinetics with a V max of 50.1 nmol/g/min and a K m of 17.7 m M in the left frontal cortex. The kinetic analysis indicated that, at a physiologic sodium concentration, ∼26% of sodium transport at the blood-brain barrier (BBB) was carrier mediated. Dimethylamiloride (25 µ M ), an inhibitor of Na+/H+ exchange, reduced sodium transport by 28%, whereas phenamil (25 µ M ), a sodium channel inhibitor, reduced the transfer constant for sodium by 22%. Bumetanide (250 µ M ) and hydrochlorothiazide (1.5 m M ), inhibitors of Na+-K+-2Cl/NaCl symport, were ineffective in reducing blood to brain sodium transport. Acetazolamide (0.25 m M ), an inhibitor of carbonic anhydrase, did not change sodium transport at the BBB. Finally, a perfusate pH of 7.0 or 7.8 or a perfusate P co 2 of 86 mm Hg failed to change sodium transport. These results indicate that 50% of transcellular transport of sodium from blood to brain occurs through Na+/H+ exchange and a sodium channel in the luminal membrane of the BBB. We propose that the sodium transport systems at the luminal membrane of the BBB, in conjunction with Cl/HCO3 exchange, lead to net NaCl secretion and obligate water transport into the brain.  相似文献   

8.
Kinetics of Neutral Amino Acid Transport Across the Blood-Brain Barrier   总被引:12,自引:8,他引:12  
Neutral amino acid (NAA) transport across the blood-brain barrier was examined in pentobarbital-anesthetized rats with an in situ brain perfusion technique. Fourteen of 16 plasma NAAs showed measurable affinity for the cerebrovascular NAA transport system. Values of the transport constants (Vmax, Km, KD) were determined for seven large NAAs from saturation studies, whereas Km values for five small NAAs were estimated from inhibition studies. These data, together with our previous work, provide a complete set of constants for prediction of NAA influx from plasma. Among the NAAs, Vmax varied at least fivefold and Km varied approximately 700 fold. The apparent affinity (1/Km) of each NAA was related linearly (r = 0.910) to the octanol/water partition coefficient, a measure of NAA side-chain hydrophobicity. Predicted influx values from transport constants and average plasma concentrations agree well with values measured using plasma perfusate. These results provide accurate new estimates of the kinetic constants that determine NAA transport across the blood-brain barrier. Furthermore, they suggest that affinity of a L-alpha-amino acid for the transport system is determined primarily by side-chain hydrophobicity.  相似文献   

9.
Lead transport at the blood-brain barrier has been studied by short (less than 1.5 min) vascular perfusion of one cerebral hemisphere of the rat with a buffered physiological salt solution at pH 7.4 without calcium, magnesium, or bicarbonate and containing 203 Pb-labelled lead chloride. In the absence of complexing agents, 203Pb uptake was rapid, giving a space of 9.7 ml/100 g of wet frontal cortex at 1 min. Lead-203 influx was linear with lead concentration up to 4 microM. Five percent albumin, 200 microM cysteine, or 1 mM EDTA almost abolished 203Pb uptake. Lead-203 entry into brain was uninfluenced by varying the calcium concentration or by magnesium or the calcium blocker methoxyverapamil. Similarly, 1 mM bicarbonate or 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid was without effect. Increasing the potassium concentration reduced 203Pb uptake. Vanadate at 2 mM, 2 microM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (a metabolic uncoupler), or 2 microM stannic chloride all markedly enhanced lead entry into brain, as did a more alkaline pH (7.80). In conclusion, there is a mechanism allowing rapid passive transport of 203Pb at the brain endothelium, perhaps as PbOH+. Lead uptake into brain via this system is probably made less important by active transport of lead back into the capillary lumen by the calcium-ATP-dependent pump.  相似文献   

10.
Abstract: Zinc-65 transport into different regions of rat brain has been measured during short vascular perfusion of one cerebral hemisphere with an oxygenated HEPES-containing physiological saline at pH 7.40. The [Zn2+] was buffered with either bovine serum albumin or histidine. In each case uptake was linear with time up to 90 s. 65Zn flux into brain in the presence of albumin followed Michaelis-Menten kinetics and for parietal cortex had a K m of 16 n M and a V max of 44 nmol/kg/min. Increasing concentrations of l -histidine enhanced 65Zn flux into brain at [Zn2+] values between 1 and 1,000 n M . The combined effect of [histidine] and [Zn2+] was best accounted for by a function of [ZnHis+], i.e., flux = 64.4 · [ZnHis+]/(390 + [ZnHis+]) + 0.00378 · [ZnHis+], with concentrations being nanomolar. d -Histidine had an influence similar to that of l -histidine. 65Zn flux in the presence of 100 µ M l -histidine was not affected by either 500 µ M l -arginine or 500 µ M l -phenylalanine. The results indicate specific transport of Zn2+ across the plasma membranes of brain endothelium. The enhancement due to histidine has been attributed to diffusion of ZnHis+ across unstirred layers "ferrying" zinc to and from transport sites.  相似文献   

11.
Abstract: The nature of cysteine and cystine uptake from the cerebral capillary lumen was studied in the rat using the carotid injection technique. [35S]-Cysteine uptake was readily inhibited by the synthetic amino acid 2-amino-bicyclo(2,2,1)heptane-2-carboxylic acid (BCH), the defining substrate for the leucine-preferring (L) system in the Ehrlich ascites cell. The addition of non-radioactive alanine or serine, representatives of the alanine, serine, and cysteine-preferring (ASC) system, produced no significant decrease in the uptake of cysteine after cysteine transport by the L system was blocked with BCH. This indicated that the major component of cysteine's transport from the brain capillary lumen was by the L system with no detectable uptake of cysteine by the ASC system. No carrier-mediated transport of cystine, the disulfide form of the amino acid, was detected, nor was there any inhibition by cystine of the transport of the neutral amino acid methionine or the basic amino acid arginine. These results suggest that the ASC system, if present, is not quantitatively important for the transport of neutral amino acids from the brain capillary lumen.  相似文献   

12.
Intestinal vitamin C (Asc) absorption was believed to be mediated by the Na+-dependent ascorbic acid transporter SVCT1. However, Asc transport across the intestines of SVCT1 knock-out mice is normal indicating that alternative ascorbic acid transport mechanisms exist. To investigate these mechanisms, rodents were gavaged with Asc or its oxidized form dehydroascorbic acid (DHA), and plasma Asc concentrations were measured. Asc concentrations doubled following DHA but not Asc gavage. We hypothesized that the transporters responsible were facilitated glucose transporters (GLUTs). Using Xenopus oocyte expression, we investigated whether facilitative glucose transporters GLUT2 and GLUT5–12 transported DHA. Only GLUT2 and GLUT8, known to be expressed in intestines, transported DHA with apparent transport affinities (Km) of 2.33 and 3.23 mm and maximal transport rates (Vmax) of 25.9 and 10.1 pmol/min/oocyte, respectively. Maximal rates for DHA transport mediated by GLUT2 and GLUT8 in oocytes were lower than maximal rates for 2-deoxy-d-glucose (Vmax of 224 and 32 pmol/min/oocyte for GLUT2 and GLUT8, respectively) and fructose (Vmax of 406 and 116 pmol/min/oocyte for GLUT2 and GLUT8, respectively). These findings may be explained by differences in the exofacial binding of substrates, as shown by inhibition studies with ethylidine glucose. DHA transport activity in GLUT2- and GLUT8-expressing oocytes was inhibited by glucose, fructose, and by the flavonoids phloretin and quercetin. These studies indicate intestinal DHA transport may be mediated by the facilitative sugar transporters GLUT2 and GLUT8. Furthermore, dietary sugars and flavonoids in fruits and vegetables may modulate Asc bioavailability via inhibition of small intestinal GLUT2 and GLUT8.  相似文献   

13.
Unidirectional L-phenylalanine transport into six brain regions of pentobarbital-anesthetized rats was studied using the in situ brain perfusion technique. This technique allows both accurate measurements of cerebrovascular amino acid transport and complete control of perfusate amino acid composition. L-Phenylalanine influx into the brain was sodium independent and could be described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants in the parietal cortex equaled 6.9 X 10(-4) mumol/s/g for Vmax, 0.011 mumol/ml for Km, and 1.8 X 10(-4) ml/s/g for KD during perfusion with fluid that did not contain competing amino acids. D-Phenylalanine competitively inhibited L-phenylalanine transport with a Ki approximately 10-fold greater than the Km for L-phenylalanine. There were no significant regional differences in Km, KD, or Ki, whereas Vmax was significantly greater in the cortical lobes than in the other brain regions. L-Phenylalanine influx during plasma perfusion was only 30% of that predicted in the absence of competing amino acids. Competitive inhibition increased the apparent Km during plasma perfusion by approximately 20-fold, to 0.21 mumol/ml. These data provide accurate new estimates of the kinetic constants that describe L-phenylalanine transport across the blood-brain barrier. In addition, they indicate that the cerebrovascular transfer site affinity (1/Km) for L-phenylalanine is three- to 12-fold greater than previously estimated in either awake or anesthetized animals.  相似文献   

14.
Regional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex equaled 9.7 X 10(-4) mumol/s/g for Vmax, 0.054 mumol/ml for Km, and 1.0 X 10(-4) ml/s/g for KD in the absence of competing amino acids. Saturable influx could be reduced by greater than 85% by either L-phenylalanine or 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with transport by the cerebrovascular neutral amino acid transport system. The transport Km for ACHC was one-fifth that for the more commonly used homologue, 1-aminocyclopentanecarboxylic acid, and was similar to values for several natural amino acids, such as L-methionine, L-isoleucine, and L-tyrosine. The results indicate that ACHC may be a useful probe for in vivo studies of amino acid transport into brain.  相似文献   

15.
Threonine entry into brain is altered by diet-induced changes in concentrations of plasma amino acids, especially the small neutrals. To study this finding further, we compared effects of various amino acids (large and small neutrals, analogues, and transport models) on transport of threonine and phenylalanine across the blood-brain barrier. Threonine transport was saturable and was usually depressed more by natural large than small neutrals. Norvaline and 2-amino-n-butyrate (AABA) were stronger competitors than norleucine. 2-Aminobicyclo[2.2.1]heptane-2-carboxylate (BCH), a model in other preparations for the large neutral (L) system, and cysteine, a proposed model for the ASC system only in certain preparations, reduced threonine transport; 2-(methylamino)isobutyrate (MeAIB; a model for the A system for small neutrals) did not. Phenylalanine transport was most depressed by cold phenylalanine and other large neutrals; threonine and other small neutrals had little effect. Norleucine, but not AABA, was a strong competitor; BCH was more competitive than cysteine or MeAIB. Absence of sodium did not affect phenylalanine transport, but decreased threonine uptake by 25% (p less than 0.001). Our results with natural, analogue, and model amino acids, and especially with sodium, suggest that threonine, but not phenylalanine, may enter the brain partly by the sodium-dependent ASC system.  相似文献   

16.
beta-N-Methylamino-L-alanine (BMAA) is a neurotoxic plant amino acid that has been implicated in the pathogenesis of the high incidence amyotrophic lateral sclerosis and related parkinsonism dementia of the western Pacific. Previous studies have demonstrated that BMAA is taken up into brain following intravenous or oral administration. To examine the kinetics and mechanism of brain transfer, BMAA influx across the blood-brain barrier was measured in rats using an in situ brain perfusion technique. BMAA influx was found to be saturable with a maximal transfer rate (Vmax) of 1.6 +/- 0.3 x 10(-3) mumol/s/g and a half-saturation constant (Km) of 2.9 +/- 0.7 mM based on total perfusate BMAA concentration. Uptake was sodium independent and inhibitable by excess L-leucine, but not by L-lysine, L-glutamate, or methylaminoisobutyric acid, indicative of transfer by the cerebrovascular large neutral amino acid carrier. L-BMAA competitively reduced brain influx of L-[14C]leucine, as expected for cross-inhibition. The results demonstrate that BMAA is taken up into brain by the large neutral amino acid carrier of the blood-brain barrier and suggest that uptake may be sensitive to the same factors that affect neutral amino acid transport, such as diet, metabolism, disease, and age.  相似文献   

17.
The present investigation using labeled pyruvate describes the regional distribution and kinetics of the monocarboxylic acid carrier at the blood-brain barrier of conscious rats. The experimental procedure involved the arterial injection of a single bolus of 200 microliter containing [1-14C]pyruvate, [3H]water, and varying concentrations of unlabeled pyruvate into the common carotid via an indwelling externalized catheter. The hemisphere ipsi-lateral to the injection and rostral to the midbrain was removed and dissected into five regions. A kinetic analysis revealed no significant regional differences in Km values with an overall average of 1.37 mM. However, there was regional variation in the density of the monocarboxylic acid carrier as indicated by varied levels of the kinetic constant Vmax. The cortex showed the highest Vmax value of 0.42 +/- 0.08 mumol/min/g whereas values for the caudate/putamen, thalamus/hypothalamus, and remaining portion of hemisphere ranged significantly lower at 0.22-0.27 mumol/min/g. The Vmax for the hippocampus was intermediate at 0.37 +/- 0.12 mumol/min/g. The nonsaturable carrier described kinetically by KD had an overall average of 0.034 ml/min/g. The present study confirms quantitatively previous results suggesting a variable regional distribution of the monocarboxylic acid carrier.  相似文献   

18.
19.
Abstract: Data are presented in support of the transport of (-)- d -3-hydroxybutyrate across the blood-brain barrier (BBB) being a carrier-mediated process. The kinetic parameters in 21-day-old pentobarbital-anaesthetized rats were Vmax 2.0 μmol.g−1.min−1, K m 29 m M , and K D 0.024 ml.g−1.min−1. The value for Vmax was the same as that for l -lactate and pyruvate transport in animals of the same age. The transport of all three substrates was sensitive to inhibition by low concentrations of either 2-oxo-3-methylbutanoate or 2-0x0-4-methylpentanoate, the 2-oxo acids that can accumulate in patients with maple-syrup-urine disease. The K m values for the 2-oxo acids were severalfold lower than the respective K m values. 2-oxo-3-phenylpropionate was a poor inhibitor. The relative affinities of the various monocarboxylic acids for the transport system of the BBB distinguished it from similar systems described in brain, heart, and liver mitochondria; human erythrocytes; and Ehrlich ascites-tumour cells.  相似文献   

20.
Anesthetics, particularly barbiturates, have depressive effects on cerebral blood flow and metabolism and likely have similar effects on blood-brain barrier (BBB) transport. In previous studies utilizing the carotid injection technique, it was necessary to anesthetize the animals prior to performing the experiment. The carotid injection technique was modified by catheter implantation in the external carotid artery at the bifurcation of the common carotid artery. The technique was used to determine cerebral blood flow, the Km, Vmax, and KD of glucose transport in hippocampus, caudate, cortex, and thalamus-hypothalamus in conscious rats. Blood flow increased two to three times from that seen in the anesthetized rat. The Km in the four regions ranged between 6.5 and 9.2 mM, the Vmax ranged between 1.15 and 2.07 mumol/min/g, and the KD ranged between 0.015 and 0.035 ml/min/g. The Km and KD in the conscious rat did not differ from the values seen in the barbiturate anesthetized rat. The Vmax, on the other hand, increased two- to three-fold from that seen in the anesthetized rat and was nearly proportional to the increase in blood flow seen in the conscious rat. The development of the external carotid catheter technique now allows for determination of BBB substrate transport in conscious animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号