首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R E Galardy  D Grobelny 《Biochemistry》1983,22(19):4556-4561
Di- and tripeptides with sequences present in collagen that are known to occupy the S1' through S3' subsites at the active site of the collagenase from Clostridium histolyticum do not themselves inhibit this zinc protease. Thus glycylproline, glycylprolylalanine, and their C-terminal amides are not inhibitors. N alpha-Phosphorylglycylproline, N alpha-phosphorylglycyl-L-prolyl-L-alanine, and their C-terminal amides are weak inhibitors with IC50's (concentration causing half-maximal inhibition) of 4.6, 0.8, 3, and 1.5 mM, respectively. Extension of glycyl-L-prolyl-L-alanine to L-leucyl-glycyl-L-prolyl-L-alanine gives a tetrapeptide known to occupy the S1, S1', S2', and S3' subsites of collagenase when present in collagen but that still does not itself inhibit the enzyme. (Isoamylphosphonyl)glycyl-L-prolyl-L-alanine, a peptide containing a tetrahedral phosphorus atom at the position of the amide carbonyl carbon of the L-leucylglycyl amide bond of the parent tetrapeptide, inhibits collagenase with an IC50 of 16 microM, at least 1000-fold more potent than the parent peptide. Substitution of the two-carbon ethyl chain of alanine for the five-carbon isoamyl chain of leucine increases the IC50 to 46 microM. Substitution of the n-decyl chain for the isoamyl chain does not change the IC50. (Isoamylphosphonyl)glycyl-glycyl-L-proline contains a tripeptide that does not occupy the S1' through S3' subsites of collagenase when this peptide is present in collagen and thus has an IC50 of 4.4 mM. (Isoamylphosphonyl)glycyl-L-prolyl-L-alanine may be an analogue of the tetrahedral transition state for the hydrolysis of the natural collagen substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
D Grobelny  R E Galardy 《Biochemistry》1986,25(5):1072-1078
Three classes of carbonyl-containing substrate analogues and partial substrate analogues have been tested for their ability to inhibit angiotensin converting enzyme. (4-Oxobutanoyl)-L-proline is proposed to occupy the S1' and S2' subsites on the enzyme, thus locating its aldehyde carbonyl group at the position of the active site zinc atom. This aldehyde is 70% hydrated in aqueous solution and could mimic a tetrahedral intermediate occurring during enzyme-catalyzed substrate hydrolysis, but its Ki is only 760 microM. Carbobenzoxy-L-isoleucyl-L-histidyl-L-prolyl-L-phenylalaninal is proposed to occupy the S1 through S4 subsites on the other side of the zinc atom. Its weak Ki of 60 microM is nearly equipotent to its parent peptide terminating in phenylalanine. However, ketoace, (5RS)-(5-benzamido-4-oxo-6-phenylhexanoyl)-L-proline [Almquist, R.G., Chao, W.R., Ellis, M.E., & Johnson, H.L. (1980) J. Med. Chem. 23, 1392-1398], one of the third class of inhibitors proposed to occupy subsites S1 through S2' on both sides of the zinc atom, has a Ki of 0.0006 microM under our assay conditions, orders of magnitude more potent than its parent peptide. The carbonyl carbon of ketoace is less than 3% hydrated in aqueous solution as determined by carbon-13 nuclear magnetic resonance spectroscopy. If the hydrate is the species bound to converting enzyme, its Ki must be less than 18 pM. Ketoace is a slow-binding inhibitor of converting enzyme, but its overall Ki is dependent on its concentration and therefore prevents calculation of kinetic constants for slow binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
D Grobelny  U B Goli  R E Galardy 《Biochemistry》1985,24(26):7612-7617
The Ki's of three peptide ketone and three peptide alcohol inhibitors of carboxypeptidase A are compared with Ki's of their respective isosteric peptide substrates, N alpha-benzoyl-L-phenylalanine, N alpha-benzoylglycyl-L-phenylalanine, and N alpha-carbobenzoxyglycylglycyl-L-phenylalanine. For the isosteric ketone analogues of these substrates, the respective Ki's are as follows: (2RS)-2-benzyl-4-(3-methoxyphenyl)-4-oxobutanoic acid, 180 +/- 40 microM; (2RS)-5-benzamido-2-benzyl-4-oxopentanoic acid (V), 48 +/- 7 microM; (2RS)-2-benzyl-5-(carbobenzoxyglycinamido)-4-oxopentanoic acid (IX), 9 +/- 0.1 microM. For the alcohols derived by reduction of each of these ketones, Ki's are as follows: (2RS,4RS)-2-benzyl-4-(3-methoxyphenyl)-4-hydroxybutanoic acid, 190 +/- 10 microM; (2RS,4RS)-5-benzamido-2-benzyl-4-hydroxybutanoic acid (IV), 160 +/- 62 microM; (2RS,4RS)-2-benzyl-5-(carbobenzoxyglycinamido)-4-hy droxypentanoic acid (XI), 600 +/- 100 microM. Ki values for the competitive peptide ketone inhibitors decrease with increasing peptide chain length. This is consistent with the possibility of increased binding interaction between inhibitor and enzyme by simple occupation of additional binding subsites by adding more amino acid residues to the inhibitor. In contrast, the Ki values of the alcohols (competitive or mixed inhibition) increased or remain essentially unchanged with increasing chain length. Increasing the chain length of ketone inhibitor V to give IX decreases Ki by one-fifth. The Ki of ketone IX is also less than 1/30th the Ki of its isosteric peptide and almost 1/70th that of its isosteric alcohol, XI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The substrate specificity of human collagenase 3 (MMP-13), a member of the matrix metalloproteinase family, is investigated using a phage-displayed random hexapeptide library containing 2 x 10(8) independent recombinants. A total of 35 phage clones that express a peptide sequence that can be hydrolyzed by the recombinant catalytic domain of human collagenase 3 are identified. The translated DNA sequence of these clones reveals highly conserved putative P1, P2, P3 and P1', P2', and P3' subsites of the peptide substrates. Kinetic analysis of synthetic peptide substrates made from human collagenase 3 selected phage clones reveals that some of the substrates are highly active and selective. The most active substrate, 2, 4-dinitrophenyl-GPLGMRGL-NH(2) (CP), has a k(cat)/K(m) value of 4.22 x 10(6) m(-)(1) s(-)(1) for hydrolysis by collagenase 3. CP was synthesized as a consensus sequence deduced from the preferred subsites of the aligned 35 phage clones. Peptide substrate CP is 1300-, 11-, and 820-fold selective for human collagenase 3 over the MMPs stromelysin-1, gelatinase B, and collagenase 1, respectively. In addition, cleavage of CP is 37-fold faster than peptide NF derived from the major MMP-processing site in aggrecan. Phage display screening also selected five substrate sequences that share sequence homology with a major MMP cleavage sequence in aggrecan and seven substrate sequences that share sequence homology with the primary collagenase cleavage site of human type II collagen. In addition, putative cleavage sites similar to the consensus sequence are found in human type IV collagen. These findings support previous observations that human collagenase 3 can degrade aggrecan, type II and type IV collagens.  相似文献   

5.
The ketone cinnamoyl-(1-13C-Phe)-CGly-Pro-Pro [(4-13C-5-cinnamido-4-oxo-6-phenylhexanoyl)-Pro-Pro 2] competitively inhibits a mixture of collagenases from Clostridium histolyticum with a Ki of 40 +/- 6 nM. 13C-nmr spectroscopy of the ketone in the presence of this collagenase shows a bound 13C resonance at 102.6 ppm and the resonance of the free ketone at 212 ppm. Ketone alone shows no trace (less than 0.5%) of a resonance in the region around 100 ppm. The bound resonance is displaceable by another competitive inhibitor. This ketone is thus a transition state analog which is rehybridized from trigonal planar to tetrahedral upon binding to collagenase.  相似文献   

6.
A new series of thio ester, depsipeptide, and peptide substrates have been synthesized for the bacterial enzyme Clostridium histolyticum collagenase. The hydrolysis of the depsipeptide substrate was followed on a pH stat, and thio ester hydrolysis was measured by inclusion of the chromogenic thiol reagent 4,4'-dithiopyridine in the assay mixture. The best thio ester substrate, Boc-Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba, had a kcat/KM of 63 000 M-1 s-1, while several shorter thio ester sequences were inactive as substrates. In general, the peptide analogues of all the reactive thio ester substrates were shown to be hydrolyzed 5-10 times faster by collagenase. In one case (Z-Gly-Pro-Leu-Gly-Pro-NH2) where a comparison was made, the peptide substrate was respectively 8- and 106-fold more readily hydrolyzed than the corresponding thio ester and ester substrates. Cleavages of the two fluorescence-quench substrates Abz-Gly-Pro-Leu-Gly-Pro-Nba and Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba could be easily followed fluorogenically since a 5-10-fold increase in fluorescence occurred upon hydrolysis. The fluorescent peptide substrate is the best synthetic substrate known for C. histolyticum collagenase with a kcat/KM value of 490 000 M-1 s-1. A series of new reversible inhibitors were developed by the attachment of zinc ligating groups (hydroxamic acid, carboxymethyl, and thiol) to various peptide sequences specific for C. histolyticum collagenase. The shorter peptides designed to bind to either the P3-P1 or P1'-P3' subsites were poor to moderate inhibitors. The thiol HSCH2CH2CO-Pro-Nba had the lowest K1 (0.02 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
High-resolution crystallographic analysis of a complex of the serine-carboxyl proteinase sedolisin with pseudo-iodotyrostatin revealed two molecules of this inhibitor bound in the active site of the enzyme, marking subsites from S3 to S3('). The mode of binding represents two products of the proteolytic reaction. Substrate specificity of sedolisin was investigated using peptide libraries and a new peptide substrate for sedolisin, MCA-Lys-Pro-Pro-Leu-Glu#Tyr-Arg-Leu-Gly-Lys(DNP)-Gly, was synthesized based on the results of the enzymatic and crystallographic studies and was shown to be efficiently cleaved by the enzyme. The kinetic parameters for the substrate, measured by the increase in fluorescence upon relief of quenching, were: k(cat)=73+/-5 s(-1), K(m)=0.12+/-0.011 microM, and k(cat)/K(m)=608+/-85 s(-1)microM(-1).  相似文献   

8.
To quantitatively estimate the inhibitory effect of each substrate-binding subsite of cathepsin B (CB), a series of epoxysuccinyl derivatives with different functional groups bound to both carbon atoms of the epoxy ring were synthesized, and the relationship between their inhibitory activities and binding modes at CB subsites was evaluated by the X-ray crystal structure analyses of eight complexes. With the common reaction in which the epoxy ring of inhibitor was opened to form a covalent bond with the SgammaH group of the active center Cys29, the observed binding modes of the substituents of inhibitors at the binding subsites of CB enabled the quantitative assessment of the inhibitory effect of each subsite. Although the single blockage of S1' or S2' subsite exerts only the inhibitory effect of IC50 = approximately 24 microM (k2 = approximately 1250 M(-1) s(-1)) or approximately 15 microM (k2 = approximately 1800 M(-1) s(-1)), respectively, the synchronous block of both subsites leads to IC50 = approximately 23 nM (k2 = 153,000 - 185,000 M(-1) s(-1)), under the condition that (i) the inhibitor possesses a P1' hydrophobic residue such as Ile and a P2' hydrophobic residue such as Ala, Ile or Pro, and (ii) the C-terminal carboxyl group of a P2' residue is able to form paired hydrogen bonds with the imidazole NH of His110 and the imidazole N of His111 of CB. The inhibitor of a Pn' > or = 3' substituent was not potentiated by collision with the occluding loop. On the other hand, it was suggested that the inhibitory effects of Sn subsites are independent of those of Sn' subsites, and the simultaneous blockage of the funnel-like arrangement of S2 and S3 subsites leads to the inhibition of IC50 = approximately 40 nM (k2 = approximately 66,600 M(-1) s(-1)) regardless of the lack of Pn' substituents. Here we present a systematic X-ray structure-based evaluation of structure-inhibitory activity relationship of each binding subsite of CB, and the results provide the structural basis for designing a more potent CB-specific inhibitor.  相似文献   

9.
Analogues of peptides ranging in size from three to six amino acids and containing the hydroxyethylene dipeptide isosteres Phe psi Gly, Phe psi Ala, Phe psi NorVal, Phe psi Leu, and Phe psi Phe, where psi denotes replacement of CONH by (S)-CH(OH)CH2, were synthesized and studied as HIV-1 protease inhibitors. Inhibition constants (Ki) with purified HIV-1 protease depend strongly on the isostere in the order Phe psi Gly greater than Phe psi Ala greater than Phe psi NorVal greater than Phe psi Leu greater than Phe psi Phe and decrease with increasing length of the peptide analogue, converging to a value of 0.4 nM. Ki values are progressively less dependent on inhibitor length as the size of the P1' side chain within the isostere increases. The structures of HIV-1 protease complexed with the inhibitors Ala-Ala-X-Val-Val-OMe, where X is Phe psi Gly, Phe psi Ala, Phe psi NorVal, and Phe psi Phe, have been determined by X-ray crystallography (resolution 2.3-3.2 A). The crystals exhibit symmetry consistent with space group P6(1) with strong noncrystallographic 2-fold symmetry, and the inhibitors all exhibit 2-fold disorder. The inhibitors bind in similar conformations, forming conserved hydrogen bonds with the enzyme. The Phe psi Gly inhibitor adopts an altered conformation that places its P3' valine side chain partially in the hydrophobic S1' pocket, thus suggesting an explanation for the greater dependence of the Ki value on inhibitor length in the Phe psi Gly series. From the kinetic and crystallographic data, a minimal inhibitor model for tight-binding inhibition is derived in which the enzyme subsites S2-S2' are optimally occupied. The Ki values for several compounds are compared with their potencies as inhibitors of proteolytic processing in T-cell cultures chronically infected with HIV-1 (MIC values) and as inhibitors of acute infectivity (IC50 values). There is a rank-order correspondence, but a 20-1000-fold difference, between the values of Ki and those of MIC or IC50. IC50 values can approach those of Ki but are highly dependent on the conditions of the acute infectivity assay and are influenced by physiochemical properties of the inhibitors such as solubility.  相似文献   

10.
The kinetic properties of phosphofructokinase from muscle of the giant cirripede Austromegabalanus psittacus were characterized, after partial purification by ion exchange chromatography on DEAE-cellulose. This enzyme showed differences regarding PFKs from other marine invertebrates: the affinity for fructose 6-phosphate (Fru 6-P) was very low, with an S(0.5) of 22.6+/-1.4 mM (mean+/-S.D., n=3), and a high cooperativity (n(H) of 2.90+/-0.21; mean+/-S.D., n=3). The barnacle PFK showed hyperbolic saturation kinetics for ATP (apparent K(m ATP)=70 microM, at 5 mM Fru 6-P, in the presence of 2 mM ammonium sulfate). ATP concentrations higher than 1 mM inhibited the enzyme. Ammonium sulfate activated the PFK several folds, increasing the affinity of the enzyme for Fru 6-P and V(max). 5'-AMP (0.2 mM) increased the affinity for Fru 6-P (S(0.5) of 6.2 mM). Fructose 2,6-bisphosphate activated the PFK, with a maximal activation at concentrations higher than 2 microM. Citrate reverted the activation of PFK produced by 0.2 mM 5'-AMP (IC(50 citrate)=2.0 mM), producing a higher inhibition than that exerted on other invertebrate PFKs. Barnacle muscular PFK was activated in vitro after exposure to exogenous cyclic-AMP (0.1 mM) as well as by phosphatidylserine (50 microg/ml), indicating a possible control by protein kinase A and a phospholipid dependent protein kinase (PKC). The results suggest a highly regulated enzyme in vivo, by allosteric mechanisms and also by protein phosphorylation.  相似文献   

11.
Bradykinin and 22 of its analogs were evaluated for their abilities to inhibit the hydrolysis of [3H]hippurylglycylglycine by purified porcine kidney angiotensin I converting enzyme. The mean inhibitory concentration (IC50) for bradykinin was 1.2 +/- 0.2 X 10(-6) M. Except for Ile-Ser-bradykinin and [Sar4]-bradykinin, none of the kinin analogs were more potent in this regard than bradykinin. Bacitracin, gamma-aminobutyric acid, epsilon-aminocaproic acid, and structurally related compounds were also tested. The IC50 value for bacitracin was 1.9 +/- 0.4 X 10(-4) M, gamma-aminobutyric acid, 83.4 +/- 7.2 mM, and for epsilon-aminocaproic acid, 7.0 +/- 1.4 mM. Compounds were also evaluated for their abilities to prevent 125I-labelled [Tyr1]-kallidin binding to angiotensin I converting enzyme inhibited by EDTA. The IC50 values for bradykinin, bacitracin, gamma-aminobutyric acid, and epsilon-aminocaproic acid were 1.6 +/- 0.3 X 10(-8) M, 2.6 +/- 0.9 X 10(-6) M, greater than 291 mM, and 13.2 +/- 3.9 mM, respectively.  相似文献   

12.
One of the efficient mode of treatments of chronic hypertension and cardiovascular disorders has been to restrain the formation of angiotensin-II by inhibiting the action of angiotensin-converting enzyme (ACE) on angiotensin-I. A number of ACE inhibitors (ACEIs) have been put to therapeutic use during the last two decades. The efforts continue towards achieving superior molecules or drugs with improved affinities, better bioavailability and thus long duration of action with minimum side effects. The present work evolves around similar objectives. In order to understand the mode of interaction of inhibitors with the active site of the enzyme and subsequently to have lead compounds as possible inhibitors the novel dipeptidomimics and tripeptidomimics have been designed and synthesized using combinatorial chemistry approach. A Focussed library of 10 di- and tri-peptides, eight dipeptidomemics and forty tripeptidomemics was generated. The pharmacophoric heterocyclic moieties and the amino acids have been selected to have affinities with the S1, S1', and S2' subsites of the active site of the enzyme. ACE inhibition studies clearly demonstrated the structural-activity relationships within these classes of peptidomimics. The dipeptidomimics interacted only with S1' and S2' subsites, whereas the tripeptidomemics had additional interaction with S1 subsite, which accounted for their significant ACE inhibition potencies. The in-vitro screening of these peptidomimics have resulted in identification of four promising tripeptidomimics 34[2-benzimidazolepropionyl-Val-Trp], 35[5hydroxytryptophanyl-Val-Trp], 40[2-benzimidazolepropionyl-Ile-Trp] and 45[2-benzimidazolepropionyl-Lys-Trp] with IC50 values in micromolar concentrations.  相似文献   

13.
Germination inhibitory constituents from Erigeron annuus   总被引:3,自引:0,他引:3  
Oh H  Lee S  Lee HS  Lee DH  Lee SY  Chung HT  Kim TS  Kwon TO 《Phytochemistry》2002,61(2):175-179
(5-Butyl-3-oxo-2,3-dihydrofuran-2-yl)-acetic acid was isolated from the flowers of Erigeron annuus as one of four germination inhibitory constituents. Its structure was determined by analysis of MS and NMR spectroscopic data. Three known compounds, 3-hydroxy-pyran-4-one, 4-hydroxycinnamic acid, and 3,4-dihydroxycinnamic acid methyl ester were also identified as active constituents. These compounds showed 50% inhibitory effects (IC(50)) on the germination of lettuce seed at concentrations of 2.13+/-0.03, 12.85+/-0.56, 4.97+/-0.24, and 4.87+/-0.25 mM, respectively. 4-Hydroxybenzoic acid was used as a positive control, displaying an IC(50) value of 4.02+/-0.39 mM.  相似文献   

14.
Endothelial nitric-oxide synthase (type III) (eNOS) was reported to form an inhibitory complex with the bradykinin receptor B2 (B2R) from which the enzyme is released in an active form upon receptor activation (Ju, H., Venema, V. J., Marrero, M. B., and Venema, R. C. (1998) J. Biol. Chem. 273, 24025-24029). Using a synthetic peptide derived from the known inhibitory sequence of the B2R (residues 310-329) we studied the interaction of the receptor with purified eNOS and neuronal nitric-oxide synthase (type I) (nNOS). The peptide inhibited formation of L-citrulline by eNOS and nNOS with IC(50) values of 10.6 +/- 0.4 microM and 7.1 +/- 0.6 microM, respectively. Inhibition was not due to an interference of the peptide with L-arginine or tetrahydrobiopterin binding. The NADPH oxidase activity of nNOS measured in the absence of L-arginine was inhibited by the peptide with an IC(50) of 3.7 +/- 0.6 microM, but the cytochrome c reductase activity of the enzyme was much less susceptible to inhibition (IC(50) >0.1 mM). Steady-state absorbance spectra of nNOS recorded during uncoupled NADPH oxidation showed that the heme remained oxidized in the presence of the synthetic peptide consisting of amino acids 310-329 of the B2R, whereas the reduced oxyferrous heme complex was accumulated in its absence. These data suggest that binding of the B2R 310-329 peptide blocks flavin to heme electron transfer. Co-immunoprecipitation of B2R and nNOS from human embryonic kidney cells stably transfected with human nNOS suggests that the B2R may functionally interact with nNOS in vivo. This interaction of nNOS with the B2R may recruit the enzyme to allow for the effective coupling of bradykinin signaling to the nitric oxide pathway.  相似文献   

15.
Two novel glucosinolates along with one known glucosinolate were isolated from Broccoli (Brassica oleracea L. var. italica) florets. Their structures were established mainly by 1D ((1)H and (13)C NMR), 2D NMR ((1)H-(1)H COSY, DEPT 135°, HSQC and HMBC), and Tandem MS-MS spectrometric data as 2-mercaptomethyl sulfinyl glucosinolate [(Z)-4-(methylsulfinyl)-N-(sulfooxy)-2-((2'S,3'R,4'S,5'S,6'R)-3',4',5'-trihydroxy-6'(hydroxylmethyl)-2'-mercapto tetrahydro-2H-pyran-2-yl) butane amide] 1, (Z)-1-((2S,5S)-5-hydroxytetra-hydro-2H-pyran-2-ylthio)-2-(1H-indol-3-yl) ethylidene amino sulfate 2 and a known cinnamoyl [6'-O-trans-(4″-hydroxy cinnamoyl)4-(methylsulphinyl)butyl glucosinolate] 3. Compound 1 exhibited scavenging activity against DPPH with an inhibitory concentration IC(50) of 20mM, whereas compound 3 was a weak antioxidant when compared to the standard quercetin (5mM) as a positive control. Both the compounds showed a significant and similar antimicrobial activity against Staphylococcus aureus with an IC(50) of <625μg/mL when compared to antibiotic duricef. Against Salmonella typhimurium the IC(50) of 1 and 3 was determined as <625μg/mL and <1250μg/mL, respectively, when compared to ampicillin (IC(50) ?39μg/mL) as a positive control.  相似文献   

16.
The newly synthesized benzimidazole compounds were suggested to be inhibitors of Plasmodium falciparum plasmepsin II and human cathepsin D by virtual screening of an internal library of synthetic compounds. This was confirmed by enzyme inhibition studies that gave IC(50) values in the low micromolar range (2-48μM). Ligand docking studies with plasmepsin II predicted binding of benzimidazole compounds at the center of the extended substrate-binding cleft. According to the plausible mode of binding, the pyridine ring of benzimidazole compounds interacted with S1' subsite residues whereas the acetophenone moiety was in contact with S1-S3 subsites of plasmepsin II active center. The benzimidazole derivatives were evaluated for capacity to inhibit the growth of intraerythrocytic P. falciparum in culture. Four benzimidazole compounds inhibited parasite growth at ?3μM. The most active compound 10, 1-(4-phenylphenyl)-2[2-(pyridinyl-2-yl)-1,3-benzdiazol-1-yl]ethanone showed an IC(50) of 160nM. The substitution of a phenyl group and a chlorine atom at the para position of the acetophenone moiety were shown to be crucial for antiplasmodial activity.  相似文献   

17.
Memapsin 2 is the protease known as beta-secretase whose action on beta-amyloid precursor protein leads to the production of the beta-amyloid (Abeta) peptide. Since the accumulation of Abeta in the brain is a key event in the pathogenesis of Alzheimer's disease, memapsin 2 is an important target for the design of inhibitory drugs. Here we describe the residue preference for the subsites of memapsin 2. The relative k(cat)/K(M) values of residues in each of the eight subsites were determined by the relative initial cleavage rates of substrate mixtures as quantified by MALDI-TOF mass spectrometry. We found that each subsite can accommodate multiple residues. The S(1) subsite is the most stringent, preferring residues in the order of Leu > Phe > Met > Tyr. The preferences of other subsites are the following: S(2), Asp > Asn > Met; S(3), Ile > Val > Leu; S(4), Glu > Gln > Asp; S(1)', Met > Glu > Gln > Ala; S(2)', Val > Ile > Ala; S(3)', Leu > Trp > Ala; S(4)', Asp > Glu > Trp. In general, S subsites are more specific than the S' subsites. A peptide comprising the eight most favored residues (Glu-Ile-Asp-Leu-Met-Val-Leu-Asp) was found to be hydrolyzed with the highest k(cat)/K(M) value so far observed for memapsin 2. Residue preferences at four subsites were also studied by binding of memapsin 2 to a combinatorial inhibitor library. From 10 tight binding inhibitors, the consensus preferences were as follows: S(2), Asp and Glu; S(3), Leu and Ile; S(2)', Val; and S(3)', Glu and Gln. An inhibitor, OM00-3, Glu-Leu-Asp-LeuAla-Val-Glu-Phe (where the asterisk represents the hydroxyethylene tansition-state isostere), designed from the consensus residues, was found to be the most potent inhibitor of memapsin 2 so far reported (K(i) of 3.1 x 10(-10) M). A molecular model of OM00-3 binding to memapsin 2 revealed critical improvement of the interactions between inhibitor side chains with enzyme over a previous inhibitor, OM99-2 [Ghosh, A. K., et al. (2000) J. Am. Chem. Soc. 14, 3522-3523].  相似文献   

18.
Prolyl endopeptidase [EC 3.4.21.26] was purified to homogeneity from the culture filtrate of Agaricus bisporus by a procedure that comprised ammonium sulfate fractionation, anion-exchange chromatographies on DEAE-Toyopearl and DEAE-Sephadex, hydroxylapatite chromatography, and high-performance liquid chromatography (HPLC) on a TSKgel G 2000 SW column. The overall activity recovery was 8.6%. The enzyme was most active at or around pH 7.5 and was stable in the range of pH 5-9 when checked with Z-Gly-Pro-beta-naphthylamide as a substrate. The isoelectric point of the enzyme was about 4.8. The enzyme was a monomeric protein of molecular weight 78,000 +/- 2,000 as judged by gel permeation chromatography on Sephadex G-150 and electrophoresis on sodium dodecyl sulfate (SDS) polyacrylamide gel. The enzyme hydrolyzed Pro-X bonds and at least five subsites (S3, S2, S1, S1', and S2') were found to be involved in enzyme-substrate binding. Among them, S2, S1, and S1' subsites of the enzyme showed high stereospecificity. The enzyme was strongly inhibited by diisopropylfluorophosphate (DFP), Z-Gly-Pro-CH2Cl, Z-Pro-prolinal, Z-Pro-pyrrolidine, Z-Thiopro-pyrrolidine, Z-Pro-thiazolidine, Z-Thioprothiazolidine, and p-chloromercuribenzoate (PCMB), while it was not inhibited by phenyl-methylsulfonyl fluoride (PMSF), E-64, iodoacetamide, or metal chelators. Although the A. bisporus enzyme showed no immunological cross reaction with anti-bovine prolyl endopeptidase antiserum, the other characteristics were quite similar to those of mammalian and plant enzymes.  相似文献   

19.
The biological functions of human neutrophil protease 3 (Pr3) differ from those of neutrophil elastase despite their close structural and functional resemblance. Although both proteases are strongly cationic, their sequences differ mainly in the distribution of charged residues. We have used these differences in electrostatic surface potential in the vicinity of their active site to produce fluorescence resonance energy transfer (FRET) peptide substrates for investigating individual Pr3 subsites. The specificities of subsites S5 to S3' were investigated both kinetically and by molecular dynamic simulations. Subsites S2, S1', and S2' were the main definers of Pr3 specificity. Combinations of results for each subsite were used to deduce a consensus sequence that was complementary to the extended Pr3 active site and was not recognized by elastase. Similar sequences were identified in natural protein substrates such as NFkappaB and p21 that are specifically cleaved by Pr3. FRET peptides derived from these natural sequences were specifically hydrolyzed by Pr3 with specificity constants k(cat)/K(m) in the 10(6) m(-1) s(-1) range. The consensus Pr3 sequence may also be used to predict cleavage sites within putative protein targets like the proform of interleukin-18, or to develop specific Pr3 peptide-derived inhibitors, because none is available for further studies on the physiopathological function of this protease.  相似文献   

20.
Inhibitory effects of some drugs were investigated on human erythrocyte 6-phosphogluconate dehydrogenase obtained with a 6552-fold purification in a yield of 78% using 2', 5'-ADP Separose 4B affinity gel. Which on SDS polyacrylamide gel electrophoresis showed a single band. Larnoxicam, metronidazole, imipenem, ornidazole, vancomycin, clindamycin, and amoxicillin exhibited inhibitory effects on the enzyme in vitro with IC50 values of 0.17, 0.23, 0.43, 21.79, 46.39, 117.43 and 287.35 mM, and the Ki constants 0.40 +/- 0.04, 0.57 +/- 0.06, 0.77 +/- 0.11, 42.40 +/- 2.89, 65.60 +/- 4.03, 130.22 +/- 9.21, and 287.58 +/- 10.56 mM, respectively. While vancomycin, clindamycin and amoxicillin showed competitive inhibition the other drugs displayed noncompetitive inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号