首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Prey-dependent models, with the predation rate (per predator) a function of prey numbers alone, predict the existence of a trophic cascade. In a trophic cascade, the addition of a top predator to a two-level food chain to make a three-level food chain will lead to increases in the population size of the primary producers, and the addition of nutrients to three-level chains will lead to increases in the population numbers at only the first and third trophic levels. In contrast, ratio-dependent models, with the predation rate (per predator) dependent on the ratio of predator numbers to prey, predict that additions of top predators will not increase the population sizes of the primary producers, and that the addition of nutrients to a three-level food chain will lead to increases in population numbers at all trophic levels. Surprisingly, recent meta-analyses show that freshwater pelagic food web patterns match neither prey-dependent models (in pelagic webs, ''prey'' are phytoplankton, and ''predators'' are zooplankton), nor ratio-dependent models. In this paper we use a modification of the prey-dependent model, incorporating strong interference within the zooplankton trophic level, that does yield patterns matching those found in nature. This zooplankton interference model corresponds to a more reticulate food web than in the linear, prey-dependent model, which lacks zooplankton interference. We thus reconcile data with a new model, and make the testable prediction that the strength of trophic cascades will depend on the degree of heterogeneity in the zooplankton level of the food chain.  相似文献   

3.
A general model of linearized species interactions, essentially Lotka–Volterra theory, applied to questions of biodiversity has previously been shown to be a powerful tool for understanding local species–abundance patterns and community responses to environmental change for a single trophic level. Here this approach is extended to predict community composition and responses to environmental changes in trophically structured systems. We show how resource and consumer species richness and their relative abundances vary with the means and variances in enrichment level and strengths of intra- and interspecific interactions. Also demonstrated are the responses of local resource and consumer species richness to the global species pools at both trophic levels, as well as the covariation with net resource productivity. These predictions for resource and consumer specific responses to changes in environmental enrichment and global biodiversity are directly testable.  相似文献   

4.
1. Several models predict that elevated levels of zooplanktivory will promote increases in phytoplankton abundance and corresponding decreases in water clarity. Because estimates of zooplanktivorous fish abundance are logistically difficult, empirical testing of these models has been limited. Our goal was to examine whether the impact of mysids and larval chaoborids on their herbivorous zooplankton prey is either transmitted to, or becomes uncoupled at, the phytoplankton and water quality levels. 2. A secondary analysis of ninety-eight correlation coefficients from twenty-five published and unpublished data sets indicated that on average 71% of all correlations agreed with the predictions of top-down trophic interactions, although most did so with only marginal or weak support. 3. Potential confounding by variable nutrient concentrations, alternative determinants of water clarity and omnivory may complicate simple interpretation of the influence of pelagic invertebrates on zooplankton in lakes.  相似文献   

5.
Summary This article investigates the mean abundances of trophic levels in simple models of two- and three-level food chains as a function of the rate of input of nutrients. The analysis concentrates on cases in which the equilibrium point with all species present is unstable. In most of the models, the instability arises because the consumer species become satiated when food density is high. In unstable two-level systems, bottom level abundance generally increases with increased nutrient input. The abundance of the second level may decrease with increased input. Changes in the intrinsic rate of increase and carrying capacity of the bottom level can have qualitatively opposite effects on trophic level abundances. Refuges for or immigration of the bottom level usually cause both levels to increase in mean abundance with an increased carrying capacity. A variety of different predator—prey models are discussed briefly and the results suggest that increased nutrient input will often increase the abundance of both levels; however, several circumstances can cause the top level to decrease. In three-level systems, an increased carrying capacity can cause extinction of the top level. Extinction may or may not be conditional on the initial densities of the three levels. These results may help explain the observed lack of correlation between productivity and the number of trophic levels in natural food webs, as well as the lack of very long food chains. The results suggest that patterns of abundances across productivity gradients cannot be used to assess the importance of top-down vs bottom-up effects.  相似文献   

6.
1. Trophic heterogeneity, or differences in edibility or resource consumption among species within a single trophic level, is widespread in natural food webs. Here, we test simple food web models that incorporate trophic heterogenity and that make robust predictions regarding food web responses to nutrient enrichment. To test these predictions, we assembled simple food webs consisting of an inedible alga, a mixed assemblage of bacteria, and a protist bacterivore in laboratory microcosms of contrasting nutrient concentrations. 2. Several results were consistent with model predictions. First, increasing nutrient concentration caused an increase in the abundance of the inedible alga, but only in the presence of the bacterivore. Secondly, nutrient enrichment increased the abundance of bacteria, but only in the absence of their bacterivore. Last, nutrient enrichment had no effect on abundance of the bacterivore. 3. Two results were not consistent with model predictions. First, at low nutrient concentrations, the presence of the bacterivore increased the abundance of bacteria. Secondly, although the abundances of the bacterivore and bacteria were positively correlated, some of the lowest abundances of both occurred in the high nutrient treatment. Thus, while our results were generally consistent with several simple food web models, additional explanations are required for selected food web responses.  相似文献   

7.
‘Wasp-waist’ control of marine ecosystems is driven by a combination of top-down and bottom-up forcing by a few abundant short-lived species occupying intermediate trophic levels that form a narrow ‘waist’ through which energy flow from low to high trophic levels is controlled. It has been assumed that wasp-waist control occurs primarily in highly productive and species-poor systems (e.g. upwelling regions). Two large, species-rich, pelagic ecosystems in the relatively oligotrophic eastern and western Pacific Ocean also show wasp-waist-like structure, in that short-lived and fast-growing cephalopods and fishes at intermediate trophic levels comprise the vast majority of the biomass. Possible forcing dynamics of these systems were examined using ecosystem models by altering the biomass of phytoplankton (bottom-up forcing), large pelagic predators (top-down forcing), and intermediate ‘wasp-waist’ functional groups independently and observing how these changes propagated throughout the ecosystem. The largest effects were seen when altering the biomass of mid trophic-level epipelagic and mesopelagic fishes, where dramatic trophic cascades occurred both upward and downward in the system. We conclude that the high productivity and standing biomass of animals at intermediate trophic levels has a strong top-down influence on the abundance of primary producers. Furthermore, their importance as prey for large predators results in bottom-up controls on populations at higher trophic levels. We show that these tropical pelagic ecosystems possess a complex structure whereby several waist groups and alternate trophic pathways from primary producers to apex predators can cause unpredictable effects when the biomasses of particular functional groups are altered. Such models highlight the possible structuring mechanisms in pelagic systems, which have implications for fisheries that exploit these wasp-waist groups, such as squid fisheries, as well as for fisheries of top predators such as tunas and billfishes that prey upon wasp-waist species.  相似文献   

8.
Climate change and fisheries exploitation are dramatically changing the abundances, species composition, and size spectra of fish communities. We explore whether variation in ‘abundance size spectra’, a widely studied ecosystem feature, is influenced by a parameter theorized to govern the shape of size‐structured ecosystems—the relationship between the sizes of predators and their prey (predator–prey mass ratios, or PPMRs). PPMR estimates are lacking for avast number of fish species, including at the scale of trophic guilds. Using measurements of 8128 prey items in gut contents of 97 reef fish species, we established predator–prey mass ratios (PPMRs) for four major trophic guilds (piscivores, invertivores, planktivores, and herbivores) using linear mixed effects models. To assess the theoretical predictions that higher community‐level PPMRs leads to shallower size spectrum slopes, we compared observations of both ecosystem metrics for ~15,000 coastal reef sites distributed around Australia. PPMRs of individual fishes were remarkably high (median ~71,000), with significant variation between different trophic guilds (~890 for piscivores; ~83,000 for planktivores), and ~8700 for whole communities. Community‐level PPMRs were positively related to size spectrum slopes, broadly consistent with theory, however, this pattern was also influenced by the latitudinal temperature gradient. Tropical reefs showed a stronger relationship between community‐level PPMRs and community size spectrum slopes than temperate reefs. The extent that these patterns apply outside Australia and consequences for community structure and dynamics are key areas for future investigation.  相似文献   

9.
Concern about climate change has spurred experimental tests of how warming affects species' abundance and performance. As this body of research grows, interpretation and extrapolation to other species and systems have been limited by a lack of theory. To address the need for theory for how warming affects species interactions, we used consumer-prey models and the metabolic theory of ecology to develop quantitative predictions for how systematic differences between the temperature dependence of heterotrophic and autotrophic population growth lead to temperature-dependent herbivory. We found that herbivore and plant abundances change with temperature in proportion to the ratio of autotrophic to heterotrophic metabolic temperature dependences. This result is consistent across five different formulations of consumer-prey models and over varying resource supply rates. Two models predict that temperature-dependent herbivory causes primary producer abundance to be independent of temperature. This finding contradicts simpler extensions of metabolic theory to abundance that ignore trophic interactions, and is consistent with patterns in terrestrial ecosystems. When applied to experimental data, the model explained 77% and 66% of the variation in phytoplankton and zooplankton abundances, respectively. We suggest that metabolic theory provides a foundation for understanding the effects of temperature change on multitrophic ecological communities.  相似文献   

10.
Recent studies suggest that nutrient variation influences rocky intertidal community structure, however empirical evidence is rare. In the Gulf of Maine, tidepools that occur on seagull feeding roosts are potentially subjected to regular nutrient loading from seagull guano. The results of a survey conducted on Swan's Island, ME show that roost tidepools have very low macroinvertebrate and macroalgal diversity as well as very high phytoplankton biomass compared to non-roost tidepools. An experiment presented here tested basic food chain hypotheses in tidepool communities. These basic food chain models predict that in a tidepool with one trophic level (phytoplankton only), phytoplankton biomass will increase when nutrients are enriched. In contrast, these models predict that in two trophic level tidepools (phytoplankton and mussels) herbivory will prevent an increase in phytoplankton biomass when nutrients are enriched. A short term 2×2 factorially designed field experiment was used to test this basic conceptual model using herbivory by mussels and enrichment with nitrogen as the main effects. The results of this investigation are consistent with the predictions of basic food chain models, and indicate that over the short time interval of a few days, herbivory by mussels is sufficient to maintain low phytoplankton levels following enrichment with nitrogen. Experimental enrichment with phosphorus in this study had no effect on phytoplankton biomass. The results of this study suggest that periodic pulses of nitrogen into tidepools will have little effect on phytoplankton biomass when mussels are present and that longer-term chronic nitrogen influxes may be driving the patterns of community structure in tidepools occurring on roosts.  相似文献   

11.
The interactions between consumers and prey, and their impact on biomass distribution among trophic levels, are central issues in both empirical and theoretical ecology. In a long-term experiment, where all organisms, including the top predator, were allowed to respond to environmental conditions by reproduction, we tested predictions from ''prey-dependent'' and ''ratio-dependent'' models. Prey-dependent models made correct predictions only in the presence of strong interactors in simple food chains, but failed to predict patterns in more complex situations. Processes such as omnivory, consumer excretion, and unsuitable prey-size windows (invulnerable prey) increased the complexity and created patterns resembling ratio-dependent consumption. However, whereas the prey-dependent patterns were created by the mechanisms predicted by the model, ratio-dependent patterns were not, suggesting that they may be ''right for the wrong reason''. We show here that despite the enormous complexity of ecosystems, it is possible to identify and disentangle mechanisms responsible for observed patterns in community structure, as well as in biomass development of organisms ranging in size from bacteria to fish.  相似文献   

12.
The relative importance of top-down and bottom-up control in setting the equilibrium abundances within trophic levels is examined in a comparative study on the litter-based food chain of a temperate deciduous forest. During two consecutive years, we estimated the abundances of macroinvertebrate detritivores and their predators on a natural gradient of annual litterfall. Detritus-based food chains are thought to be classical examples of donor-controlled systems. Indeed, both trophic levels showed higher abundances on sites with higher annual litterfall. Therefore, they appear to be bottom-up controlled. Using the Errors-in-Variables regression technique, we quantitatively compared our data with the equilibrium predictions of a set of simple trophic chain models including bottom-up effects with different types of functional responses (Beddington-DeAngelis, Hassell-Varley, and ratio-dependent). The model with a Hassell-Varley type functional response yielded the best adjustment to the data, although with a very high value of the mutual interference parameter suggesting the existence of overcompensating density dependence. Several changes to the structure of this model were considered. Their adjustment to the data consistently yielded such high values of the interference parameter.  相似文献   

13.
Summary Menge and Sutherland (1976) predicted that in physically benign habitats: (1) community structure will be most strongly affected be predation, (2) the effect of predation will increase with a decrease in trophic position in the food web, (3) trophically intermediate species will be influenced by both predation and competition, and (4) competition will occur among prey species which successfully escape consumers. These predictions were tested in a tropical rocky intertidal community on the Pacific coast of Panama. The most abundant mobile species included fishes and crabs, which occupied the top trophic level, and predaceous gastropods and herbivorous molluscs, which occupied intermediate trophic levels. The most abundant sessile organisms were encrusting algae, foliose algae, barnacles, and bivalves. Diets were broad and overlapping, and 30.3% of the consumers were omnivorous. Each consumer group had strong effects on prey occurring at lower trophic levels: (1) Fishes and crabs reduced the abundance of predaceous snails, herbivorous molluscs, foliose algae, and sessile invertebrates. (2) Predaceous gastropods reduced the abundance of herbivorous molluscs and sessile invertebrates. (3) Herbivorous molluscs reduced the abundance of foliose algae and young stages of sessile invertebrates, and altered relative abundances of the encrusting algae. The encrusting algae, although normally the dominant space occupiers, proved to be inferior competitors for space with other sessile organisms when consumers were experimentally excluded. However, the crusts escaped consumers by virtue of superior anti-herbivore defenses and competed for space despite intense grazing. Observations do not support the hypothesis that the trophically intermediate species compete. Hence, with the exception of this last observation, the predictions of the Menge and Sutherland model were supported. Although further work is needed to evaluate other predictions of the model in this community, evidence from this study joins an increasing body of knowledge supporting the model. Contradictory evidence also exists, however, indicating that aspects of the model require revision.  相似文献   

14.
Arditi and Ginzburg (2012) propose ordinary differential equations (ODEs) with ratio-dependent functional responses as the new null model for predation, based on their earlier work on ratio-dependent food chains and a number of functional response measurements. Here, I discuss some of their claims, arguing for a flexible and problem-driven approach to predator–prey modeling. Models to understand population cycles and models to predict the effect of basal enrichment on food chains need not be the same. While ratio-dependent functional responses in ODE models might sometimes be useful as limit cases for food chains, they are not intrinsically more useful than prey-dependent models to understand the effect of a given predator on prey population dynamics—and sometimes less useful, given the small temporal scales considered in many models. “Instantism” is showed to be an invalid criticism when ODEs are interpreted as describing average trajectories of stochastic birth–death processes. Moreover, other modeling frameworks with strong ties to time series statistics, such as stochastic difference equations, should be promoted to improve the feedback loop between field and theoretical research. The main problems of current trophic ecology do not lie in a wrong null model, as ecologists have already several at their disposal. The loose connection of ODE models with empirical data and spatial/temporal scaling up of empirical measurements constitute more serious challenges to our understanding of trophic interactions and their consequences on ecosystem functioning.  相似文献   

15.
Mean juvenile fish abundance and fish frequency in a large lowland river during low discharge largely differed among the unvegetated and three morphologically contrasted macrophyte habitats. Single separate models revealed that juvenile fish distribution was largely influenced by trophic variables. With the exception of Leuciscus cephalus , which responded mainly to physical variables (depth and substratum), multiple regression models emphasized the importance of trophic variables for fish distribution. For Blicca bjoerkna , L. cephalus and Lepomis gibbosus , habitat shifts with respect to prey size were apparent; small juvenile fishes mainly responded to small zooplankton abundance, whereas large individuals were more influenced by the abundance of large zooplankton. Whatever the species, predictions from multiple regression models were always better for large individuals. Small juvenile fishes appeared to be less affected by the habitat variables measured, and exhibited more uniform spatial distribution. The relative importance of trophic resources and habitat physical structure among macrophyte types for fish-habitat relationships is discussed, and the necessity of quantifying habitat structural complexity is emphasized.  相似文献   

16.
We assessed the relative influence of total phosphorus and piscivore biomass on the abundance of benthivores, soft‐rayed planktivores, spiny‐rayed planktivores, zooplankton and phytoplankton in 69 shallow lakes in the prairie and parkland areas of Minnesota, USA. Piscivore biomass was the best predictor for three of these response variables, exhibiting a negative relationship with soft‐rayed planktivores, a positive relationship with benthivores, and a weaker positive relationship with large‐bodied cladocerans. Total phosphorus and piscivores comprised the best model for predicting spiny‐rayed planktivores, while neither variable showed any strong relationship to small‐bodied cladocerans. Total phosphorus was positively related to phytoplankton abundance, and was the best predictor among all candidate models. Moreover, contrary to predictions of trophic cascade theory, the relationship between chlorophyll a and total phosphorus did not differ between lakes with and without piscivores. Our results indicated top‐down influences of piscivores extended through parts of two trophic levels, but failed to influence zooplankton – phytoplankton interactions, leaving phytoplankton abundance constrained largely by total phosphorus. Lack of a relationship between piscivores and phytoplankton was likely due to high densities of larval planktivores less susceptible to piscivory, as well as positive influences of spiny‐rayed planktivores and benthivores on algal abundance. These results support the idea that top–down influences of piscivores on phytoplankton abundance may be reduced in more diverse fish communities where some prey species are less susceptible to piscivory.  相似文献   

17.
The assumption that per capita consumer effects on prey density are independent of consumer and prey density is examined with a large-scale manipulation of an aquatic herbivore (Daphnia). A gradient of consumer removal was maintained long enough to allow the abundances of both consumer and prey (phytoplankton) to equilibrate to the manipulation. Strong and unequivocal nonlinearities were found in the effect of Daphnia on total phytoplankton abundance and the abundance of most of the common phytoplankton species. Daphnia's suppression of phytoplankton was strong between 0 and approximately 400 microg Daphnia L(-1) but essentially nil from approximately 400 to 900 microg Daphnia L(-1). The sharp deceleration in Daphnia's effect was not caused by a shift within the phytoplankton community toward consumption-resistant forms. The most likely explanation for the deceleration was a reduction in Daphnia's filtering effort at low phytoplankton abundance, that is, a Type III functional response. A review of experimental literature suggested that decelerating effects of consumers are the norm in aquatic systems. Nonlinear effects present problems for the estimation of interaction strength and the building of community interaction models from the results of predator manipulations. It is suggested that the role of field experiments in community ecology should be to test rather than to parameterize models.  相似文献   

18.
Ecological communities are often characterised by many species occupying the same trophic level and competing over a small number of vital resources. The mechanisms maintaining high biodiversity in such systems are still poorly understood. Here, we revisit the role of prey selectivity by generalist predators in promoting biodiversity. We consider a generic tri‐trophic food web, consisting of a single limiting resource, a large number of primary producers and a generalist predator. We suggest a framework to describe the predator functional response, combining food selectivity for distinctly different functional prey groups with proportion‐based consumption of similar prey species. Our simulations reveal that intermediate levels of prey selectivity can explain a high species richness, functional biodiversity, and variability among prey species. In contrast, perfect food selectivity or purely proportion‐based food consumption leads to a collapse of prey functional biodiversity. Our results are in agreement with empirical phytoplankton rank‐abundance curves in lakes.  相似文献   

19.
A growing number of studies suggest ratio-dependence may be common in many predator–prey systems, yet in large mammal systems, evidence is limited to wolves and their prey in Isle Royale and Yellowstone. More importantly, the consequences of ratio-dependent predation have not been empirically examined to understand the implications for prey. Wolves recolonized Banff National Park in the early 1980s, and recovery was correlated with significant elk declines. I used time-series data of wolf kill rates of elk, wolf and elk densities in winter from 1985–2007 to test for support for prey-, ratio-, or predator dependent functional and numeric responses of wolf killing rate to elk density. I then combined functional and numeric responses to estimate the total predation response to identify potential equilibrium states. Evidence suggests wolf predation on elk was best described by a type II ratio-dependent functional response and a type II numeric response that lead to inversely density-dependent predation rate on elk. Despite support for ratio-dependence, like other wolf-prey systems, there was considerable uncertainty amongst functional response models, especially at low prey densities. Consistent with predictions from ratio-dependent models, however, wolves contributed to elk population declines of over 80 % in our Banff system. Despite the statistical signature for ratio-dependence, the biological mechanism remains unknown and may be related to multi-prey dynamics in our system. Regardless, ratio-dependent models strike a parsimonious balance between theory and empiricism, and this study suggests that large mammal ecologists need to consider ratio-dependent models in predator–prey dynamics.  相似文献   

20.
Studies on trophic interactions permits the use of community-wide network analyses to evaluate the consequences of human interventions in natural communities. In this paper, we aimed to get insights into the underlying mechanism of prey selection for four piscivorous species, and evaluate behavioral responses to prey selection after an impoundment. We assemble six food web models to search for the hypothesis that best predict observed prey selection pattern of piscivorous fishes combining the following assumptions: (i) predation window, defined as the size range of prey species consumed by a piscivorous fish; (ii) prey strategies to avoid predation (iii) and prey abundance. We tested the probability of each hypothesis to reproduce two empirical data, one before and one after an impoundment with minimum assumptions. Before impoundment, we found that predators presented switching behavior, preying preferably on abundant prey; while after impoundment, predators consumed prey within its predation window. Those results explained better than the null hypotesis and all other assumptions; and corroborate with both theoretical and empirical studies. We conclude that different assumptions drives piscivorous fish behavior in different environments; and modelling procedures can be used to assess gaps in trophic interactions of fish communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号