首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The resistance to antibiotics and the distribution of virulence factors in enterococci isolated from traditional Slovak sheep cheese bryndza was compared with strains from human infections. The occurrence of 4 enterococcal species was observed in 117 bryndza-cheese isolates. The majority of strains were identified as E. faecium (76 %) and E. faecalis (23 %). Several strains of E. durans and 1 strain of E. hirae were also present. More than 90 % of strains isolated from 109 clinical enterococci were E. faecalis, the rest belonged to E. faecium. The resistance to 6 antimicrobial substances (ampicillin, ciprofloxacin, higher concentration of gentamicin, nitrofurantoin, tetracycline and vancomycin) was tested in clinical and food enterococci. A higher level of resistance was found in clinical than in food strains and E. faecium had a higher resistance than E. faecalis; no resistance to vancomycin was detected. The occurrence of 3 virulence-associated genes, cylA (coding for hemolysin), gelE (coding for gelatinase) and esp (coding for surface protein) was monitored. Differences were found in the distribution of cylA gene between clinical and bryndza-cheese E. faecalis strains; in contrast to clinical strains (45 %), cylA gene was detected in 22 % of food isolates. The distribution of 2 other virulence factors, gelE and esp, was not significantly different in the two groups of E. faecalis strains. cylA and gelE genes were not detected in E. faecium but more than 70 % of clinical E. faecium were positive for esp, even thought none of the 79 E. faecium cheese isolates contained this gene.  相似文献   

2.
The enterococci are important nosocomial pathogens with a remarkable capacity of expressing resistance to several antimicrobial agents. Their ubiquitous nature and resistance to adverse environmental conditions take account for their ability to colonize different habitats and for their potential for easy spreading through the food chain. In the present study we evaluated the distribution of species and antimicrobial susceptibility among enterococcal isolates recovered from food obtained in retail stores in Rio de Janeiro, Brazil. The following species were identified among 167 isolates obtained from poultry meat and 127 from pasteurized milk: Enterococcus faecalis (62.6%), E. casseliflavus (17.3%), E. durans (6.5%), E. gallinarum (3.0%), E. gilvus (2.4%), E. faecium (2.0%), E. hirae (1.4%), and E. sulfureus (1.0%). The overall percentages of antimicrobial resistant isolates were: 31.2 % to tetracycline, 23.8% to erythromycin, 11.3% to streptomycin, 4.3% to chloramphenicol, 3.9% to gentamicin, 1.4% to norfloxacin, 1.1% to imipenem, 0.7% to ciprofloxacin, nitrofurantoin, and penicillin, and 0.4% to ampicillin. Intermediate resistance was detected in frequencies varying from 0.5% for linezolid to 58.2% for erythromycin. None of the isolates showed resistance to glycopeptides. High-level resistance to aminoglycosides was observed in 13.1% of the isolates. Multiresistance was observed in E. faecalis, E. casseliflavus, E. faecium, E. gallinarum, E. durans and E. gilvus.  相似文献   

3.
Ghosh A  Dowd SE  Zurek L 《PloS one》2011,6(7):e22451
The enterococcal community from feces of seven dogs treated with antibiotics for 2-9 days in the veterinary intensive care unit (ICU) was characterized. Both, culture-based approach and culture-independent 16S rDNA amplicon 454 pyrosequencing, revealed an abnormally large enterococcal community: 1.4±0.8×10(8) CFU gram(-1) of feces and 48.9±11.5% of the total 16,228 sequences, respectively. The diversity of the overall microbial community was very low which likely reflects a high selective antibiotic pressure. The enterococcal diversity based on 210 isolates was also low as represented by Enterococcus faecium (54.6%) and Enterococcus faecalis (45.4%). E. faecium was frequently resistant to enrofloxacin (97.3%), ampicillin (96.5%), tetracycline (84.1%), doxycycline (60.2%), erythromycin (53.1%), gentamicin (48.7%), streptomycin (42.5%), and nitrofurantoin (26.5%). In E. faecalis, resistance was common to tetracycline (59.6%), erythromycin (56.4%), doxycycline (53.2%), and enrofloxacin (31.9%). No resistance was detected to vancomycin, tigecycline, linezolid, and quinupristin/dalfopristin in either species. Many isolates carried virulence traits including gelatinase, aggregation substance, cytolysin, and enterococcal surface protein. All E. faecalis strains were biofilm formers in vitro and this phenotype correlated with the presence of gelE and/or esp. In vitro intra-species conjugation assays demonstrated that E. faecium were capable of transferring tetracycline, doxycycline, streptomycin, gentamicin, and erythromycin resistance traits to human clinical strains. Multi-locus variable number tandem repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE) of E. faecium strains showed very low genotypic diversity. Interestingly, three E. faecium clones were shared among four dogs suggesting their nosocomial origin. Furthermore, multi-locus sequence typing (MLST) of nine representative MLVA types revealed that six sequence types (STs) originating from five dogs were identical or closely related to STs of human clinical isolates and isolates from hospital outbreaks. It is recommended to restrict close physical contact between pets released from the ICU and their owners to avoid potential health risks.  相似文献   

4.
Despite low virulence of enterococci, they have become important nosocomial pathogens. This has been correlated with the increased use of broad-spectrum antibiotics, particularly cephalosporins. Many strains of enterococci exhibit multiple drug resistance; the most important being high-level resistance (HLR) to penicillin (MIC > 100 mg/l) and gentamicin (MIC > 500 mg/l and 2000 mg/l) and/or streptomycin (MIC > 2000 mg/l). The investigation was performed on 92 strains, isolated from genito-urinary tract and recognised as Enterococcus sp. All strains were obtained from several microbiological laboratories of Gdańsk, Gdynia and Tczew. On biochemical reaction profiles species of enterococci were identified as: E. faecalis (72.8%), E. faecalis varians (9.8%), E. durans (7.6%) and E. faecium (9.8%). The minimal inhibitory concentration (MICs) of penicillin, ampicillin, azlocillin, imipenem, gentamicin, amicacin, ciprofioxacin and vancomycin were determined by the agar dilution method. None of these 92 enterococcal strains was vancomycin resistant. 22.2% of E. faecium and 7.5% of E. faecalis showed high-level resistance to penicillin. None of these strains were produced beta-lactamase. High-level resistance to streptomycin and gentamicin was detected. Both--high-level resistance to streptomycin and gentamicin--were found in 6% E. faecalis; 11.1% E. faecalis varians and 22.2% E. faecium.  相似文献   

5.
Three hundred and eight presumed enterococcal isolates were recovered from Bryndza, a soft sheep milk cheese. The cheese samples were obtained from five different commercial distributors in Slovakia and were taken at three different seasonal intervals. All isolates were identified to the species level using genotypic tools. Species-specific PCR using ddl genes highlighted the predominance of Enterococcus faecium (176 isolates) and assigned 50 isolates to the species Enterococcus faecalis. The remaining 82 isolates were classified using repetitive element sequence-based polymerase chain reaction (PCR) with primer (GTG)(5)-(GTG)(5)-PCR, in combination with phenylalanyl-tRNA synthase gene (pheS) sequence analysis and by whole-cell protein analysis (SDS-PAGE). These strains were identified as Enterococcus durans (59 strains), Enterococcus italicus (8 strains), Enterococcus casseliflavus (3 strains), Enterococcus gallinarum (3 strains), Enterococcus hirae (1 strain), and 8 strains were members of the species Lactococcus lactis. Of the seven enterococcal species isolated, three of them, E. durans, E. faecalis and E. faecium were present in all samples studied, with E. faecium as the predominant one. The precise identification of enterococci in Bryndza cheese is an essential step in the process of evaluation of their functional properties which will be further studied and assessed.  相似文献   

6.
The prevalence of glycopeptides, aminoglycosides and erythromycin resistance among Enterococcus faecalis and Enterococcus faecium was investigated. The susceptibility of 326 enterococcal hospital isolates to amikacin, kanamycin, netilmicin and tobramycin were determined using disk diffusion method. The minimum inhibitory concentration (MIC) of vancomycin, teicoplanin, gentamicin, streptomycin, and erythromycin were determined by microbroth dilution method. The genes encoding aminoglycoside modifying enzymes described as AMEs genes, erythromycin-resistant methylase (erm) and vancomycin-resistant were targeted by multiplex-PCR reaction. High level resistance (HLR) to gentamicin and streptomycin among enterococci isolates were 52% and 72% respectively. The most prevalent of AMEs genes were aac (6')-Ie aph (2") (63%) followed by aph (3')-IIIa (37%). The erythromycin resistance was 45% and 41% of isolates were positive for ermB gene. The ermA gene was found in 5% of isolates whereas the ermC gene was not detected in any isolates. The prevalence of vancomycin resistant enterococci (VRE) was 12% consisting of E. faecalis (6%) and E. faecium (22%) and all of them were VanA Phenotype. The results demonstrated that AMEs, erm and van genes are common in enterococci isolated in Tehran. Furthermore our results show an increase in the rate of vancomycin resistance among enterococci isolates in Iran.  相似文献   

7.
E. faecalis (67%) and E. faecium (13.7%) were most frequently isolated among enterococci that contaminate cooled and frozen processed meat, follow-up heat-treated meat products and unheated fermented dry salami. Most isolates of both species were resistant to cephalothin (95 and 83 %) and clindamycin (77 and 67%, respectively). Furthermore, E. faecalis and E. faecium isolates were resistant to erythromycin (44 and 72%), tetracycline (34.5 and 17.4%), and streptomycin (13.3 and 4.3%, respectively). Only a few of the isolates were resistant to ampicillin, ampicillin-sulbactam, chloramphenicol, and vancomycin while all isolates were susceptible to gentamicin, penicillin, and teicoplanin. During the production of heat-treated meat products, numbers of resistant isolates increased in spite of the decreasing enterococcal contamination of the samples. An opposite situation was found in the production of fermented dry salami.  相似文献   

8.
This study compared virulence and antibiotic resistance traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E, esp and acm were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.8% of E. faecalis and 70.4% of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linezolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.2% of E. faecalis and 70.3% of E. faecium) compared to water isolates (only 5.7% E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (p<0.05). The presence of antibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk.  相似文献   

9.
Isolates of group D streptococci from above and below a sewer outfall and a series of clinical isolates have been speciated to sub-species level. From below the sewer outfall, Streptococcus faecalis var. faecalis predominates whereas above the outfall, S. faecium var. casseliflavus predominates. S. faecalis var. faecalis, S. faecalis var. liquefaciens and S. faecalis var. zymogenes were the predominant sub-species in the clinical isolates where S. faecium var. casseliflavus was virtually absent. S. faecalis var. liquefaciens and S. faecalis var. zymogenes were uncommon in the environmental isolates. S. faecium and S. durans were more abundant in the environmental than in the clinical isolates. The use of group D streptococci as indicators of faecal pollution would seem more suited to higher, rather than lower, levels of pollution. A statistically significant increase in resistance to antibiotics (ampicillin, penicillin, streptomycin, gentamicin, erythromycin and tetracycline) was seen in isolates from below the outfall compared with those from above and a further significant increase was seen in the clinical isolates compared with the former. Resistance to tetracycline was most common and ampicillin was the only antibiotic tested to which no resistance was detected. Multiple antibiotic resistance was rare in the environmental isolates. Even in moderately polluted water, there is not a large pool of antibiotic resistance.  相似文献   

10.
AIMS: To identify enterococci isolated from sheep milk cheese--bryndza, and to compare differences in the composition of enterococcal microflora affected by the season, and to evaluate the potential presence of vancomycin resistance and virulence determinants. METHODS AND RESULTS: Bacterial strains were isolated during analysis of bryndza cheese and identified on the genus and species level by phenotypic methods and with commercial biochemical sets. The identification of the species, Enterococcus faecium, Ent. durans and Ent. faecalis, was confirmed by PCR using species-specific primers for ddl genes. PCR was also used for assessment of presence of vanA and vanB genes and virulence determinants gelE, agg and cytolysin genes namely: cylL(L), cylL(S), cylM, cylB and cylA. Among 308 Enterococcus sp. strains, 177 isolates were proved to be Ent. faecium, 59 to be Ent. durans and 41 to be Ent. faecalis. Vancomycin resistance genes vanA and vanB were not detected. Agar plate testing confirmed their absence. Gene gelE, however, was found in 20 Ent. faecalis isolates, but only 13 of them showed gelatinase-positive phenotype. Seven isolates had five cytolysin genes, but none of the isolates exhibited a positive haemolytic phenotype. Four isolates possessed the agg gene. The prevalence of Ent. faecium species was highest in samples from the winter season harvest. CONCLUSIONS: Ent. faecium is the dominant enterococcal species in bryndza cheese and the most prevalent in the winter season product. None of the Enterococcus sp. strains was proved to have vanA or vanB genes and the vancomycin resistance. SIGNIFICANCE AND IMPACT OF THE STUDY: To our knowledge, this is the first report of enterococcal microflora in bryndza cheese and its evaluation for the presence of vanA and vanB genes as well as virulence determinants.  相似文献   

11.
The aim of this study was to evaluate the drug susceptibility of 100 Enterococcus spp. strains isolated from patients hospitalized in State Clinical Hospital No 1 in Warsaw. All strains were identified (API 20 STREP) and their susceptibility to antibiotics was tested (ATB STREP) in automatic ATB system. Additionally, PYRase activity, beta-lactamase production (in nitrocefin test), MICs for vancomycin and teicoplanin (E test), HLAR--high level aminoglycoside resistance and susceptibility to vancomycin, teicoplanin, piperacillin and piperacillin/tazobactam (disc diffusion method) were determined. E. faecalis ATCC 29212 was used as the control strain. Fifty E. faecalis, 45 E. faecium, 2 E. casseliflavus, 2 E. durans and 1 E. avium strain were cultured. All strains were PYRase-positive and beta-lactamase-negative. Ten isolates demonstrated intermediate susceptibility to vancomycin (6--E. faecalis and 4--E. faecium). One E. faecalis strain was intermediately susceptible to both glycopeptides. One E. casseliflavus strain showed low-level resistance to vancomycin, but this strain was susceptible to teicoplanin--phenotype Van C. HLAR strains were found among 31 E. faecalis and 40 E. faecium strains. 48 E. faecalis strains were susceptible to piperacillin and 49 to piperacillin/tazobactam. Whereas, 41 E. faecium were resistant to both these drugs. Thirty six per cent of isolates were resistant to penicillin and ampicillin, 73% to erythromycin, 87% to tetracycline, 89% to lincomycin and 56% to nitrofurantoin. Some discrepancies were noticed between the results of different methods applied for susceptibility testing--ATB system, E test and disc diffusion. These discrepancies concerned HLAR detection and susceptibility to glycopeptides determination. The best methods were: disc-diffusion for HLAR detection and E test for determination of resistance to vancomycin and teicoplanin. Increasing resistance to antimicrobial agents is observed in clinical Enterococcus spp. isolates cultured in our laboratory, especially in E. faecium strains. It is necessary to control the dissemination of multiresistant Enterococcus spp. strains in hospital wards.  相似文献   

12.
Large amounts of tylosin, zinc-bacitracin, and avilamycin are currently used as prophylactics in New Zealand broiler production. Avoparcin was also used from 1977 to 2000. A total of 382 enterococci were isolated from 213 fecal samples (147 individual poultry farms) using enrichment broths plated on m-Enterococcus agar lacking antimicrobials. These isolates were then examined to determine the prevalence of antimicrobial resistance. Of the 382 isolates, 5.8% (22 isolates) were resistant to vancomycin, and 64.7% were resistant to erythromycin. The bacitracin MIC was > or =256 microg/ml for 98.7% of isolates, and the avilamycin MIC was > or =8 microg/ml for 14.9% of isolates. No resistance to ampicillin or gentamicin was detected. Of the 22 vancomycin-resistant enterococci (VRE) isolates, 18 (81.8%) were Enterococcus faecalis, 3 were Enterococcus faecium, and 1 was Enterococcus durans. However, when the 213 fecal enrichment broths were plated on m-Enterococcus agar containing vancomycin, 86 VRE were recovered; 66% of these isolates were E. faecium and the remainder were E. faecalis. Vancomycin-resistant E. faecium isolates were found to have heterogenous pulsed-field gel electrophoresis (PFGE) patterns of SmaI-digested DNA, whereas the PFGE patterns of vancomycin-resistant E. faecalis isolates were identical or closely related, suggesting that this VRE clone is widespread throughout New Zealand. These data demonstrate that vancomycin-resistant E. faecalis persists in the absence and presence of vancomycin-selective pressure, thus explaining the dominance of this VRE clone even in the absence of avoparcin.  相似文献   

13.
Enterococci were isolated from faecal droppings of chickens in broiler and layer farms and the susceptibilities to nine therapeutic antimicrobial agents and six growth-promoting antibiotics were determined by the agar dilution method. Resistance to therapeutic antimicrobial agents such as ampicillin, clindamycin, erythromycin, streptomycin, tetracycline or tylosin was more frequent in enterococcal isolates from broiler farms than in those from layer farms. Resistance to ofloxacin was rare, occurring in only one (0.7%) of the Enterococcus faecium isolates from broiler farms. Resistance to growth-promoting antibiotics such as avilamycin, salinomycin and virginiamycin was common among isolates from broiler farms. Of the E. faecium isolates from broiler farms, 12.4% were resistant to avilamycin and 27.4% were resistant to virginiamycin. Resistance to salinomycin was detected in all enterococcal species, ranging from 12.4% of E. faecium isolates to 50% of E. hirae isolates.  相似文献   

14.
The aim of this study was to evaluate the drug susceptibility of Enterococcus sp. strains isolated in 2000-2001, from patients of five Warsaw's hospitals (154 strains) and from fecal samples of healthy persons (33 strains). On biochemical reaction profiles species of clinical enterococci were identified as: E. faecalis--66.2%, E. faecium--29.2%, E. hirae--1.9%, E. gallinarum--1.3%, E. casseliflavus--0.6% and E. avium--0.6%. The species of enterococci from stool's samples were identified as: E. faecalis--28 strains, E. durans--2 strains and single strains: E. faecium, E. gallinarum and E. casseliflavus. Susceptibility to 20 antibiotics was tested by disc diffusion method. None of these 187 enterococcal strains was vancomycin resistant; 3 strains of E. gallinarum and 1--E. casseliflavus demonstrated intermediately susceptibility to vancomycin, but they were susceptible to teicoplanin--phenotype Van C. Among clinical strains were resistant to penicillin--33.3% of E. faecalis and 100% of E. faecium, to ampicillin--over 80% of E. faecium and 1 strain of E. faecalis. None of these strains produced beta-lactamase. High-level resistance to aminoglicoside was expressed by 48 strains (47.1%) E. faecalis and 36 (80%) E. faecium isolated from clinical specimens. Both--HLR to streptomycin and gentamycin were found in 28.3% of E. faecalis and 68.9% of E. faecium. Among 33 strains isolated from fecal samples of healthy persons--3 of E. faecalis were resistant to streptomycin and one was resistant to both gentamicin and streptomycin. In general, enterococcal strains isolated from samples of healthy persons were susceptible to the most of used antibiotics. But to rifampicin none of these strains were susceptible. There were about 40% of E. faecalis strains isolated from healthy persons, resistant to tetracyline.  相似文献   

15.
A collection of lactobacilli comprising species of Lactobacillus plantarum (43 isolates), Lactobacillus brevis (9 isolates) and Lactobacillus fermentum (6 isolates) obtained from spontaneous fermentations of capers (the fruits of Capparis spinosa) were investigated for resistance to antimicrobial agents. All isolates were resistant to vancomycin and teicoplanin (MIC > 16 μg/ml). Resistance to ciprofloxacin (MIC > 2 μg/ml) was detected in all isolates of L. brevis and L. fermentum as well as in most isolates of L. plantarum, whilst resistance to levofloxacin showed a much lower incidence. Among L. plantarum and L. brevis isolates, low levels of resistance to tetracycline and/or nitrofurantoin were detected. Higher resistance levels were also detected in some isolates. Resistance to penicillin and rifampicin were also detected among L. plantarum isolates. All isolates were sensitive to ampicillin, erythromycin, chloramphenicol, gentamicin, streptomycin, and quinupristin/dalfopristin.  相似文献   

16.
Fifty-four Enterococcus faecalis and 20 Enterococcus faecium isolates from clinical and non-human sources in Rome, Italy, were characterized by antibiotic resistance and pulsed field gel electrophoresis (PFGE). Resistance to vancomycin, teicoplanin, ampicillin, and ciprofloxacin was more frequent in E. faecium than in E. faecalis, whereas high-level resistance to aminoglycoside was found primarily in E. faecalis. Multi-resistance was found primarily among clinical isolates, but was also observed among environmental isolates. Common genotypes shared among clinical and environmental isolates were observed, however, the majority of isolates occurred as unique, source-specific clones. Several PFGE types were associated with shared features in their antibiotic resistance patterns; evidences of clonal spread between and within wards were also noted. This is the first report indicating clonal relatedness between human and environmental enterococci isolated in Italy.  相似文献   

17.
Conventional bacteriology techniques were used to identify enterococci isolates cultured from patients at different hospitals in Tehran during 2000-2001. The identification was confirmed using species-specific PCR targeting the D-alanyl-D-alanine ligase gene. A total of 59 isolates of Enterococcus faecalis were identified. The rates of resistance to different antibiotics were in the following order: penicillin 84%, ciprofloxacin 42%, high-level gentamicin 30%, nitrofurantoin 14%, imipenem 4%, and chloramphenicol 2%. Resistance to ampicillin was found to be rare among the Iranian isolates of E. faecalis. Multi-locus enzyme electrophoresis was then used to analyze the strains. Forty-five electrophoretic types were obtained when 10 enzyme loci were screened. Although the collection of bacterial isolates was limited in time and location, considerable heterogeneity was found. Analysis of strains for linkage disequilibrium demonstrated that the studied population is not clonal, since the index of association was not significantly different from zero (Ia = 0.0296). Enterococcus faecalis isolates recovered from patients in Tehran were genetically diverse and seemed to possess a high potential for genetic recombinations, though none were resistant to vancomycin.  相似文献   

18.
回顾性分析上海市某三甲医院血培养阳性标本中粪肠球菌和屎肠球菌的临床分布及对抗菌药物的耐药特征,为临床治疗其所致感染奠定基础。收集上海市某三甲医院2012年2月—2016年9月血流感染患者血液标本中的粪肠球菌和屎肠球菌,采用法国生物梅里埃公司的VITEK 2Compact全自动细菌鉴定和药敏分析系统进行细菌鉴定及药敏测定,研究细菌临床分布特点及对常用抗菌药物的耐药特征。共分离获得30株粪肠球菌和17株屎肠球菌。粪肠球菌样本主要来自泌尿科、消化科和血液科,所占比例分别为13.33%、16.67%和10.00%。粪肠球菌对青霉素、氨苄西林、环丙沙星、左氧氟沙星、四环素和红霉素的耐药率分别为13.33%、10.00%、36.67%、33.33%、66.67%和60.00%。屎肠球菌样本主要来自消化科(29.41%),其对以上抗菌药物的耐药率分别为88.24%、82.35%、88.24%、76.47%、23.53%和70.59%。屎肠球菌对青霉素、氨苄西林、环丙沙星和左氧氟沙星的耐药率显著高于粪肠球菌,而对四环素的耐药率显著低于粪肠球菌。两者均对替加环素、利奈唑胺和万古霉素敏感,但万古霉素对屎肠球菌的最低抑菌浓度显著低于粪肠球菌。结果提示,屎肠球菌对青霉素、氨苄西林、环丙沙星、左氧氟沙星的耐药率高于屎肠球菌,对万古霉素敏感,且其万古霉素最低抑菌浓度低于粪肠球菌。本研究为治疗这两种细菌所致感染的经验性用药提供了数据支持。  相似文献   

19.
The incidence and diversity of enterococci in retail food samples of meat, dairy and vegetable origin was investigated. Enterococci were present, at concentrations of 10(1) to 10(4) CFU/g. Fifty selected isolates from food samples grouped in two separate clusters by RAPD analysis. Cluster G1 (72% of the isolates) contained the E. faecium CECT 410T type strain, and also showed a high degree of genetic diversity. Cluster G2 (28% of the isolates) contained the E. faecalis CECT 481T type strain and was genetically more homogeneous. Virulence traits (haemolysin, gelatinase or DNAse activities, or the presence of structural genes cylL, ace, asal and esp) were not detected. All isolates were sensitive to the antibiotics ampicillin, penicillin, gentamicin, streptomycin and chloramphenicol. A high pecentage of isolates were resistant to erythromycin and rifampicin. Many isolates showed intermediate sensitivity to several antibiotics (tetracycline, ciprofloxacin, levofloxacin, or quinupristin/dalfopristin). Vancomycin and teicoplanin resistance was detected in one strain, but vanA, vanB, vanC1, vanC2 or vanC3 genes were not detected. Many of the isolates showed functional properties of food or health relevance. Production of antimicrobial substances was detected in 17 of the isolates, and 14 of them carried structural genes for enterocins A, B and/or P.  相似文献   

20.
目的了解温州医学院附属第一医院临床分离主要肠球菌的分布及其对常用抗菌药物的耐药现状,以指导临床合理用药。方法对2008年至2011年临床分离的635株粪肠球菌和屎肠球菌的标本来源和药敏结果进行回顾性分析。结果各种临床标本中两种肠球菌的分布比例存在差异,总体以尿液标本所占比例最多,且屎肠球菌的总体分离率高于粪肠球菌。粪肠球菌对利奈唑胺、氨苄西林、万古霉素、呋喃妥因和替考拉宁的耐药率都在5.0%以下,对莫西沙星和青霉素G的耐药率也仅为7.0%和6.7%;屎肠球菌对莫西沙星、左旋氧氟沙星、环丙沙星、氨苄西林、青霉素G和红霉素的耐药率都在90.0%以上,对利奈唑胺、万古霉素、替考拉宁和奎奴敏感。粪肠球菌的多重耐药株占总数的26.4%,屎肠球菌的多重耐药株占总数的78.2%。结论粪肠球菌和屎肠球菌对15种抗菌药物的耐药情况不同,屎肠球菌具有更高的耐药率和更广的耐药谱。临床应根据药敏试验的结果合理选择抗菌药物,以防止耐药菌株的产生和播散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号