首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The VP60 capsid protein from rabbit hemorrhagic disease virus (RHDV) (Spanish isolate AST/89) was cloned and expressed in Pichia pastoris. The transformed yeast was grown at high cell density and an expression level of about 1.5 g VP60L(-1) culture was obtained. The protein was detected associated with the cell debris fraction of the recombinant yeast after mechanical disruption. It was purified by a simple method and was obtained N-glycosylated with purity of approximately 70% as deduced from densitometry scan analysis. The recombinant product was antigenically similar to the native capsid protein as determined with polyclonal antibodies obtained from rabbits vaccinated with VP60 protein purified from native virus. The immunogenicity of VP60 protein purified from P. pastoris was demonstrated by ELISA in a vaccination experiment conducted with two groups of rabbits subcutaneously immunized. Animals vaccinated with VP60 in Freund's incomplete adjuvant developed a significant (p<0.01) virus-specific antibody response while the group injected with placebo remained seronegative. Preliminary results showed that the antigen administered within the cell debris fraction of the transformed yeast protected rabbits immunized by the oral route against an intramuscular challenge with 100 LD50 (16,000 hemagglutination units) of homologous virus.  相似文献   

3.
VP60, the unique component of rabbit hemorrhagic disease virus capsid, was expressed in the baculovirus system. The recombinant VP60, released in the supernatant of infected insect cells, assembled without the need of any other viral component to form viruslike particles (VLPs), structurally and immunologically indistinguishable from the rabbit hemorrhagic disease virion. Intramuscular vaccination of rabbits with the VLPs conferred complete protection in 15 days; this protection was found to be effective from the fifth day after VLP injection and was accompanied by a strong humoral response.  相似文献   

4.
王媛  于倩  李毅  董衍明 《生物工程学报》2020,36(10):2083-2091
兔出血症病毒(Rabbit hemorrhagic disease virus,RHDV)及兔粘液瘤病毒(Myxoma virus,MYXV)分别引起兔出血症(兔瘟)和兔粘液瘤病,是两种严重危害家兔养殖业以及导致原产地欧洲野兔-穴兔(Oryctolagus cuniculus)种群近濒危的重要病原。VP60为构成RHDV衣壳的主要抗原蛋白。为研制能同时免疫预防该两种疫病的重组二联疫苗,本研究分别以MYXV和其复制非必需基因——胸腺激酶(Thymidine kinase,TK)基因为重组载体和同源重组靶基因,构建穿梭载体p7.5-VP60-GFP。将p7.5-VP60-GFP载体转染被MYXV感染的兔肾细胞株RK13,经同源重组后,在荧光显微镜下筛选出表达GFP的重组病毒,并将其命名为rMV-VP60-GFP。通过PCR和Western blotting进行重组病毒vp60基因特异性插入和表达验证结果显示,vp60和gfp基因成功插入MYXV基因组中并且可成功表达,表明成功构建了表达RHDV衣壳蛋白基因vp60的重组MYXV。动物攻毒保护试验表明,制备的重组病毒能保护家兔抵抗MYXV的致死性攻击,这为后续疫苗的研发奠定了基础。  相似文献   

5.
Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.  相似文献   

6.
We have developed a new strategy for immunization of wild rabbit populations against myxomatosis and rabbit hemorrhagic disease (RHD) that uses recombinant viruses based on a naturally attenuated field strain of myxoma virus (MV). The recombinant viruses expressed the RHDV major capsid protein (VP60) including a linear epitope tag from the transmissible gastroenteritis virus (TGEV) nucleoprotein. Following inoculation, the recombinant viruses induced specific antibody responses against MV, RHDV, and the TGEV tag. Immunization of wild rabbits by the subcutaneous and oral routes conferred protection against virulent RHDV and MV challenges. The recombinant viruses showed a limited horizontal transmission capacity, either by direct contact or in a flea-mediated process, promoting immunization of contact uninoculated animals.  相似文献   

7.
Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50-90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level.  相似文献   

8.
Processing of rabbit hemorrhagic disease virus polyprotein.   总被引:5,自引:1,他引:5       下载免费PDF全文
Expression of rabbit hemorrhagic disease virus (RHDV) cDNAs in vitro with rabbit reticulocyte lysates and in Escherichia coli have been used to study the proteolytic processing of RHDV polyprotein encoded by ORF1. An epitope tag was used for monitoring the gene products by a specific antibody. We have identified four gene products with molecular masses of 80, 43, 73, and 60 kDa, from the amino to the carboxy terminus of the polyprotein. The amino-terminal sequences of the 43- and 73-kDa products were determined and indicated that RHDV 3C proteinase cleaved Glu-Gly peptide bonds.  相似文献   

9.
We carried out an experimental study to determine the serological response against myxoma virus (MV) and rabbit hemorrhagic disease virus (RHDV) in wild rabbits using commercial vaccines. Seroconversion against MV ranged between 72.7% and 97.2% in animals vaccinated by subcutaneous and intradermal route, respectively, whereas between 75.0% and 77.8% of the animals presented antibodies against RHDV after inoculation with subcutaneous and intradermal vaccines, respectively. Regardless of the inoculation route, vaccination against MV resulted in a significant increase of seropositivity 5 days post-vaccination (dpv), which did not occur in animals vaccinated against RHDV. Furthermore, seroconversion against MV was significantly higher and faster in intradermally vaccinated rabbits as compared to those inoculated subcutaneously due to either the route of application and/or the type of vaccine used. The results indicated that vaccination significantly increased the prevalence of antibodies against MV and RHDV and suggested that the vaccines currently available induce a safe and effective immune response against both diseases in wild rabbits. Vaccination may be a useful management tool to control both viral diseases in field conditions, particularly in wild rabbits captured for translocations and restocking purposes in which a large number of animals are handled. © 2011 The Wildlife Society.  相似文献   

10.
Mycobacterium bovis Bacille Calmette Guérin (BCG) was first administered to humans in 1921 and has subsequently been delivered to an estimated 3 billion individuals, with a low incidence of serious complications. The vaccine is immunogenic and is stable and cheap to produce. Additionally, the vaccine can be engineered to express foreign molecules in a functional form, and this has driven the development of BCG as a recombinant vector to protect against infectious diseases and malignancies such as cancer. However, it is now clear that the existing BCG vaccine has proved insufficient to control the spread of tuberculosis, and a major focus of tuberculosis vaccine development programs is the construction and testing of modified forms of BCG. This review summarizes the strategies employed to develop recombinant forms of BCG and describes the potential of these vaccines to stimulate protective immunity and protect against Mycobacterium tuberculosis infection.  相似文献   

11.
Recombinant virus vaccine for bluetongue disease in sheep.   总被引:1,自引:1,他引:1       下载免费PDF全文
Bluetongue virus proteins derived from baculovirus expression vectors have been administered in different combinations to sheep, a vertebrate host susceptible to bluetongue virus, and the neutralizing antibody responses were measured. Vaccinated sheep were subsequently challenged, and the indices of clinical reaction were calculated. The results indicated that the outer capsid protein VP2 alone in doses of greater than 50 micrograms per sheep elicited protection. A dose of ca. 50 micrograms of VP2 protected some but not all sheep. However, when used in combination with ca. 20 micrograms of the other outer capsid protein, VP5, 50-micrograms quantities of VP2 not only protected all the vaccinated sheep but also elicited a higher neutralizing-antibody response. The addition of viral core proteins VP1, VP3, VP6, and VP7, the nonstructural proteins NS1, NS2, and NS3, and the outer capsid proteins VP2 and VP5 did not enhance this neutralizing-antibody response.  相似文献   

12.
Foot-and-mouth disease (FMD) is a highly contagiousdisease of cloven-hoofed animals such as cattle and pig.The disease causes explosive epidemics and heavyeconomic losses in the agriculture worldwide [1]. FMDvirus (FMDV) shows a high genetic and antigenicvariability, and has seven serotypes: O, A, C, AsiaI, SAT1,SAT2 and SAT3 [2]. The FMDV control is mainly imple-mented using chemically inactivated virus vaccines, whichmay contain residual living virus and pose a risk of virusreleas…  相似文献   

13.
[目的]本研究旨在研究该病毒的理化特性,评价不同处理条件对RHDV2的杀灭效果.[方法]本研究拟对临床疑似RHDV2感染致死的家兔进行RT-PCR鉴定病原,并利用不同pH值、不同温度、常用兽用消毒剂、不同浓度甲醛处理RHDV2,通过PMA-RT-qPCR对病毒理化特性进行研究.[结果]经RT-PCR检测与测序分析,确诊...  相似文献   

14.
It is well documented that the enzymatic active site of Helicobacter pylori urease is present in the beta-subunit. An important sequence of 135 amino acids of the beta-subunit was determined from the structure of H. pylori urease and by a homology-based study of the urease of other bacteria and plants. The sequence (UreB) was expressed in Escherichia coli as a recombinant fusion protein with glutathione-S-transferase (GST). Seventeen monoclonal antibodies, UA-1-17, were produced using the UreB-GST as the immunogen. The obtained monoclonal antibodies showed a high specificity to UreB, and some of the MAbs cross-reacted with Jack bean urease. About 70% of the established MAbs displayed an inhibitory effect on the enzymatic activity of the urease. Among them, UA-15 MAb could reduce the activity by 53% and it immunologically binds to the bacterium infecting the human stomach mucosa. The antiserum induced by immunization with a recombinant UreB-GST into rabbits displayed a specific binding to mucosal surfaces of the human stomach infected with the pathogen H. pylori. Moreover, the antiserum suppressed the enzymatic activity of H. pylori urease, while the purified H. pylori urease could not induce such an antiserum.  相似文献   

15.
Liver tissue from animals that died of rabbit hemorrhagic disease (RHD) was used to identify the causative agent. After extraction of liver homogenates and sucrose density gradient ultracentrifugation, distinct bands were obtained. The respective gradient fractions reacted positively in an enzyme-linked immunosorbent assay as well as in hemagglutination assays and were infective for rabbits. These fractions contained virions which had a diameter of 40 nm and resembled morphologically those of the family Caliciviridae. By immunoblotting, a major structural protein with a molecular weight of 60,000 was identified. Highly pure RNA of about 8 kilobases was isolated from virions. Labeled cDNA synthesized from virion RNA detected two RNAs of 8 and 2 kilobases in Northern (RNA) blots of liver RNA from animals infected with RHD virus. Finally, isolated virion RNA injected into the liver of rabbits produced a disease with clinical symptoms and pathological findings typical of RHD. We conclude that a calicivirus represents the causative agent of RHD.  相似文献   

16.
马麝病毒性出血症(Moschus chrysogaster viral hemorrhagic disease,McVHD)为马麝的一种急性、高度致死性传染病,其病原马麝出血症病毒(Moschus chrysogaster hemorrhagic disease virus,McHDV)与兔出血症病毒高度同源。为了筛选McHDV保护性抗原,为McVHD疫苗研究奠定基础,文中通过对McHDV主要结构蛋白VP60抗原表位的分析,设计引物,应用RT-PCR技术扩增获得三段VP60主要抗原表位区核酸序列,并采用重叠延伸PCR将3段产物连接后克隆至原核表达载体pET-28a(+),成功构建原核表达质粒pET-truncated-VP60后转化大肠杆菌Escherichia coli BL21(DE3),并经IPTG诱导表达。纯化表达产物免疫3–4月龄非RHD免疫兔,血凝抑制试验测定抗血清效价。首次免疫后21 d,通过攻毒保护试验分析重组蛋白的免疫保护效力。结果表明,McHDV VP60主要抗原表位蛋白在大肠杆菌中成功表达,重组蛋白分子质量约为45 kDa,且以包涵体形式存在;重组蛋白纯化后配制疫...  相似文献   

17.
C Wirblich  H J Thiel    G Meyers 《Journal of virology》1996,70(11):7974-7983
The 7.5-kb plus-stranded genomic RNA of rabbit hemorrhagic disease virus contains two open reading frames of 7 kb (ORF1) and 351 nucleotides (ORF2) that cover nearly 99% of the genome. The aim of the present study was to identify the proteins encoded in these open reading frames. To this end, a panel of region-specific antisera was generated by immunization of rabbits with bacterially expressed fusion proteins that encompass in total 95% of the ORF1 polyprotein and almost the complete ORF2 polypeptide. The antisera were used to analyze the in vitro translation products of purified virion RNA of rabbit hemorrhagic disease virus. Our studies show that the N-terminal half of the ORF1 polyprotein is proteolytically cleaved to yield three nonstructural proteins of 16, 23, and 37 kDa (p16, p23, and p37, respectively). In addition, a cleavage product of 41 kDa which is composed of VPg and a putative nonstructural protein of approximately 30 kDa was identified. Together with the results of previous studies which identified a trypsin-like cysteine protease (TCP) of 15 kDa, a putative RNA polymerase (pol) of 58 kDa, and the major capsid protein VP60, our data establish the following gene order in ORF1: NH2-p16-p23-p37 (helicase)-p30-VPg-TCP-pol-VP60-COOH. Immunoblot analyses showed that a minor structural protein of 10 kDa is encoded in ORF2. The data provide the first complete genetic map of a calicivirus. The map reveals a remarkable similarity between caliciviruses and picornaviruses with regard to the number and order of the genes that encode the nonstructural proteins.  相似文献   

18.
Expression levels of vaccine antigens in transgenic plants have important consequences in their use as edible vaccines. The major structural protein VP60 from the rabbit haemorrhagic disease virus (RHDV) has been produced in transgenic plants using different strategies to compare its accumulation in plant tissues. The highest expressing plants were those presenting stable, complex, high-density structures formed by VP60, suggesting the importance of multisubunit structures for the stability of this protein in plant cells. Mice fed with leaves of transgenic plants expressing VP60 were primed to a subimmunogenic baculovirus-derived vaccine single dose. This indicates that plants expressing VP60 antigen may be a new means for oral RHDV immunization.  相似文献   

19.
H Le Blois  B Fayard  T Urakawa    P Roy 《Journal of virology》1991,65(9):4821-4831
A functional assay has been developed to determine the conservative nature of the interacting sites of various structural proteins of orbiviruses by using baculovirus expression vectors. For this investigation, proteins of two serologically related orbiviruses, bluetongue virus (BTV) and the less studied epizootic hemorrhagic disease virus (EHDV), were used to synthesize chimeric particles. The results demonstrate that the inner capsid protein VP3 of EHDV-1 can replace VP3 protein of BTV in formation of the single-shelled corelike particles and the double-shelled viruslike particles. Moreover, we have demonstrated that all three minor core proteins (VP1, VP4, and VP6) can be incorporated into the homologous and chimeric corelike and viruslike particles, indicating that the functional epitopes of the VP3 protein are conserved for the morphological events of the virus. This is the first evidence of assembly of seven structural proteins of the virus by a baculovirus expression system. Confirmation at the molecular level was obtained by determining the EHDV-1 L3 gene nucleic sequence and by comparing it with sequences available for BTV. The analysis revealed a high degree homology between the two proteins: 20% difference, 50% of which is conservative. The consequences for Orbivirus phylogeny and the possibility of gene reassortments are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号