首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunostimulatory oligodeoxynucleotides (ODN) containing the CpG motif are being tested as immune adjuvants in many disease settings. Of the human PBMC examined, plasmacytoid dendritic cells (pDC) are a major source of type I IFN upon stimulation with CpG ODN. IFNs have numerous immunostimulatory effects, including the induction of TNF-related apoptosis-inducing ligand (TRAIL)/Apo-2L on monocytes, NK cells, and T cells. Importantly, IFN has also been linked to antitumor responses. Thus, we tested whether CpG ODN stimulation of PBMC led to TRAIL/Apo-2L-induced tumor cell death. When PBMC were stimulated with CpG ODN, TRAIL/Apo-2L-dependent tumor cell death was observed. Further examination of CpG ODN-stimulated PBMC revealed that TRAIL/Apo-2L expression was limited to CD14(+) cells, which, when depleted, led to a loss of the TRAIL/Apo-2L-mediated tumor cell killing. Moreover, pDC depletion also abolished the TRAIL/Apo-2L-mediated killing of tumor cell targets. Analysis of the pDC showed IFN-alpha production after CpG ODN stimulation. Finally, inclusion of neutralizing IFN-alpha antiserum with the PBMC during CpG ODN stimulation abrogated TRAIL/Apo-2L-mediated tumor cell killing. These results define a mechanism by which CpG ODN induces TRAIL/Apo-2L-dependent killing of tumor cells by CD14(+) PBMC, in which CpG ODN-activated pDC produce IFN-alpha that stimulates CD14(+) PBMC to express functional TRAIL/Apo-2L.  相似文献   

2.
Lee MW  Park SC  Yang YG  Yim SO  Chae HS  Bach JH  Lee HJ  Kim KY  Lee WB  Kim SS 《FEBS letters》2002,512(1-3):313-318
To determine the apoptotic signaling pathway which tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2L) induced, we investigated the contribution of reactive oxygen species (ROS), p38 mitogen-activated protein (MAP) kinase and caspases in human adenocarcinoma HeLa cells. Here we show that upon TRAIL/Apo2L exposure there was pronounced ROS accumulation and activation of p38 MAP kinase, and that activation of caspases and apoptosis followed. Pretreatment with antioxidants such as glutathione or estrogen attenuated TRAIL/Apo2L-induced apoptosis through a reduction of ROS generation and diminished p38 MAP kinase and caspase activation. The p38 MAP kinase inhibitor SB203580 prevented apoptosis through a blockage of caspase activation, although ROS generation was not attenuated. Furthermore, the pan-caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethyl ketone fully prevented apoptosis, while neither ROS accumulation nor p38 MAP kinase activation were affected. Therefore, our results suggest that TRAIL/Apo2L-induced apoptosis is mediated by ROS-activated p38 MAP kinase followed by caspase activation in HeLa cells.  相似文献   

3.
CpG-containing oligodeoxynucleotides (CpG ODN) have broad-ranging immunostimulatory effects, including the generation of antitumor immune responses. Analysis of different CpG ODN have identified two classes: CpG-A ODN, which stimulate high levels of IFN-alpha production from plasmacytoid dendritic cells and weakly activate B cells, and CpG-B ODN, which strongly activate B cells but stimulate low production of IFN-alpha from plasmacytoid dendritic cells. Previously, we observed that CpG-B ODN (2006) induces TRAIL/Apo-2 ligand (Apo-2L)-mediated killing of tumor cells by CD14(+) PBMC. In this study, we extend our investigation of CpG ODN-induced TRAIL/Apo-2L expression and activity in PBMC to include CpG-A ODN. Of the two classes, IFN-alpha production and TRAIL/Apo-2L-mediated killing of tumor cells was greatest with CpG-A ODN. Surprisingly, CD3(+), CD14(+), CD19(+), and CD56(+) PBMC expressed high levels of TRAIL/Apo-2L following CpG-A ODN stimulation. When isolated, the CD19(+) PBMC (B cells) were able to kill tumor cells in a TRAIL/Apo-2L-dependent manner. As with CD14(+) PBMC, CD19(+) sorted B cells were capable of up-regulating TRAIL/Apo-2L expression when stimulated with IFN-alpha alone. Interestingly, agonist anti-CD40 mAb further enhanced the IFN-alpha-induced TRAIL/Apo-2L expression on CD19(+) B cells. These results are the first to demonstrate human B cell-mediated killing of tumor cells in a TRAIL/Apo-2L-dependent fashion.  相似文献   

4.
Apo-2L is a new member of the tumour necrosis factor (TNF) family shown to induce apoptosis in a number of tumour cell lines. Apo-2L mRNA is expressed by numerous human tissues. Here we report that Apo-2L is expressed and utilized by human Natural Killer (NK) cells. NK cells were shown to express surface Apo-2L in response to interleukin 2 (IL-2) activation, and this response was restricted to the CD3(-)population of the NK cells. Apo-2L mRNA and intracellular Apo-2L were present in both CD3(-)and CD3(+)NK cells; however, increased expression in response to IL-2 was only observed in CD3(-)CD56(+)cells. Also, IL-2-activated NK cells were shown to utilize membrane-bound Apo-2L in mediating lysis of Jurkat cells. Furthermore, Apo-2L-induced apoptosis of Jurkat cells was more rapid than FasL-induced apoptosis, indicating an important and distinct role for Apo-2L in apoptotic cell destruction. In conclusion, we report that NK cells express Apo-2L and that IL-2 activated CD3(-)NK cells utilize the Apo-2L pathway in mediating target cell lysis.  相似文献   

5.
目的:研究凋亡素2配体(Apo-2 ligand,Apo-2L),或称肿瘤坏死因子相关凋亡诱导配体(TNF-related apoptosis-inducing lig-and,TRAIL)在体外对人肺腺癌A549细胞系的放射增敏作用的研究。方法:MTT法检测Apo-2L单药或与放射线联合对腺癌A549细胞的抑制率,将细胞分为4组,对照组、Apo-2L组、Apo-2L+放射照射组、单纯照射组,200ng/ml、286 ng/ml的Apo-2L作用24小时后给予放射照射,照射剂量分别为:(1Gy、1.4 Gy、1.8Gy、2 Gy、3 Gy),然后进行流式细胞仪分析照射后24h各组细胞凋亡率变化。结果:MTT结果显示,腺癌A549细胞的抑制率与Apo-2L的浓度成正相关,凋亡素2配体作用24h后IC50为286ng/ml.流式细胞仪分析显示286ng/ml的Apo-2L处理24h后,细胞凋亡率从(6.68)%上升至(50)%,照射后24h Apo-2L+照射组凋亡率明显升高,为72.790%,对照组0.1185%,Apo-2L组50%,单纯照射组51.5067%。结论:Apo-2L在体外对腺癌A549细胞有抑制增殖和促进凋亡作用,并且Apo-2L联合放射线可以明显提高腺癌A549细胞的凋亡率。  相似文献   

6.
Apo2L/TRAIL is actively investigated as a novel targeted agent to directly induce apoptosis of susceptible cancer cells. Apo2L/TRAIL-refractory cells can be sensitized to the cytotoxic effect of this ligand by cytotoxic chemotherapeutics. The aim of this study was to evaluate the in vitro tumoricidal activity of the Apo2L/TRAIL + Trichostatin A in cultured thoracic cancer cells and to elucidate the molecular basis of the synergistic cytotoxicity of this combination. Concurrent exposure of cultured cancer cells to sublethal concentrations of Apo2L/TRAIL and Trichostatin A resulted in profound enhancement of Apo2L/TRAIL-mediated cytotoxicity in all cell lines regardless of their intrinsic susceptibility to this ligand. This combination was not toxic to primary normal cells. While Apo2L/TRAIL alone or Trichostatin A alone mediated < 20% cell death, 60 to 90% of cancer cells were apoptotic following treatment with TSA + Apo2L/TRAIL combinations. Complete translocation of Bax from the cytosol to the mitochondria compartment was mainly observed in combination-treated cells and this was correlated with robust elevation of caspase 9 proteolytic activity indicative of activation of the mitochondria apoptogenic effect. Profound TSA + Apo2L/TRAIL–mediated cytotoxicity and apoptosis were completely abrogated by either Bcl2 over-expression or by the selective caspase 9 inhibitor, highlighting the essential role of mitochondria-dependent apoptosis signaling cascade in this process. Moreover, increased caspase 8 activity observed in cells treated with the TSA + Apo2L/TRAIL combination was completely suppressed by Bcl-2 over-expression or by the selective caspase 9 inhibitor indicating that the elevated caspase 8 activity in combination-treated cells was secondary to a mitochondria-mediated amplification feedback loop of caspase activation. These finding form the basis for further development of HDAC inhibitors + Apo2L/TRAIL combination as novel targeted therapy for thoracic malignancies. R.M. Reddy and W.-S. Yeow contributed equally to this work. This research was supported by the Intramural Research Program of the National Cancer Institute, NIH.  相似文献   

7.
Despite evidence that antitumor immunity can be protective against renal cell carcinoma (RCC), few patients respond objectively to immunotherapy and the disease is fatal once metastases develop. We asked to what extent combinatorial immunotherapy with Adenovirus-encoded murine TNF-related apoptosis-inducing ligand (Ad5mTRAIL) plus CpG oligonucleotide, given at the primary tumor site, would prove efficacious against metastatic murine RCC. To quantitate primary renal and metastatic tumor growth in mice, we developed a luciferase-expressing Renca cell line, and monitored tumor burdens via bioluminescent imaging. Orthotopic tumor challenge gave rise to aggressive primary tumors and lung metastases that were detectable by day 7. Intra-renal administration of Ad5mTRAIL+CpG on day 7 led to an influx of effector phenotype CD4 and CD8 T cells into the kidney by day 12 and regression of established primary renal tumors. Intra-renal immunotherapy also led to systemic immune responses characterized by splenomegaly, elevated serum IgG levels, increased CD4 and CD8 T cell infiltration into the lungs, and elimination of metastatic lung tumors. Tumor regression was primarily dependent upon CD8 T cells and resulted in prolonged survival of treated mice. Thus, local administration of Ad5mTRAIL+CpG at the primary tumor site can initiate CD8-dependent systemic immunity that is sufficient to cause regression of metastatic lung tumors. A similar approach may prove beneficial for patients with metastatic RCC.  相似文献   

8.
Death signaling provided by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS) are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC), a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI)+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1), and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.  相似文献   

9.
CD95 (Fas/Apo-1) triggers apoptotic cell death via a caspase-dependent pathway. Inhibition of caspase activation blocks proapoptotic signaling and thus, prevents execution of apoptosis. Besides induction of apoptotic cell death, CD95 has been reported to trigger necrotic cell death in susceptible cells. In this study, we investigated the interplay between apoptotic and necrotic cell death signaling in T cells. Using the agonistic CD95 antibody, 7C11, we found that caspase inhibition mediated by the pancaspase inhibitor, zVAD-fmk, prevented CD95-triggered cell death in Jurkat T cells but not in A3.01 T cells, although typical hallmarks of apoptosis, such as DNA fragmentation or caspase activation were blocked. Moreover, the caspase-independent cell death in A3.01 cells exhibited typical signs of necrosis as detected by a rapid loss of cell membrane integrity and could be prevented by treatment with the radical scavenger butylated hydroxyanisole (BHA). Similar to CD95-induced cell death, apoptosis triggered by the DNA topoisomerase inhibitors, camptothecin or etoposide was shifted to necrosis when capsase activation was inhibited. In contrast to this, ZVAD was fully protective when apoptosis was triggered by the serpase inhibitor, Nalpha-tosyl-phenyl-chloromethyl ketone (TPCK). TPCK was not protective when administered to anti-CD95/ZVAD-treated A3.01 cells, indicating that TPCK does not possess anti-necrotic activity but fails to activate the necrotic death pathway. Our findings show (a) that caspase inhibition does not always protect apoptotic T cells from dying but merely activates a caspase-independent mode of cell death that results in necrosis and (b) that the caspase-inhibitor-induced shift from apoptotic to necrotic cell death is dependent on the cell type and the proapoptotic stimulus.  相似文献   

10.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various cancer cells. Hsp90 is known to be involved in cell survival and growth in tumor cells. Nevertheless, Hsp90 inhibitors exhibit a variable effect on the cytotoxicity of anticancer drugs. Furthermore, the combined effect of Hsp90 inhibitors on TRAIL-induced apoptosis in epithelial ovarian cancer cells has not been determined. To assess the ability of an inhibitor of Hsp90 inhibitor radicicol to promote apoptosis, we investigated the effect of radicicol on TRAIL-induced apoptosis in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. TRAIL induced a decrease in Bid, Bcl-2, Bcl-xL, and survivin protein levels, increase in Bax levels, loss of the mitochondrial transmembrane potential, cytochrome c release, activation of caspases (-8, -9, and -3), cleavage of PARP-1 and an increase in the tumor suppressor p53 levels. Radicicol enhanced TRAIL-induced apoptosis-related protein activation, nuclear damage and cell death. These results suggest that radicicol may potentiate the apoptotic effect of TRAIL on ovarian carcinoma cell lines by increasing the activation of the caspase-8- and Bid-dependent pathway and the mitochondria-mediated apoptotic pathway, leading to caspase activation. Radicicol may confer a benefit in the TRAIL treatment of epithelial ovarian adenocarcinoma.  相似文献   

11.
Advanced metastatic renal cell carcinoma has been shown to be responsive to immunotherapy but the response rate is still limited. We have investigated the therapeutic potential of systemic interleukin-4 (IL-4) administration for the treatment of pulmonary metastases in the murine Renca renal adenocarcinoma model. Renca cells were injected iv in Balb/c mice to induce multiple pulmonary tumor nodules. From Day 5, Renca-bearing mice were treated with two daily injections of recombinant murine IL-4 for 5 consecutive days. IL-4 treatment induced a significant reduction in the number of lung metastases in a dose-dependent manner and significantly augmented the survival of treated animals. Immunohistochemistry studies, performed on lung sections, showed macrophage and CD8+ T cell infiltration in the tumor nodules 1 day after the end of IL-4 treatment. The CD8 infiltration increased by Day 7 after IL-4 treatment. Granulocyte infiltration was not detectable. To clarify further the role of the immune system in IL-4 anti-tumor effect, mice were depleted of lymphocyte subpopulations by in vivo injections of specific antibodies prior to treatment with IL-4. Depletion of CD8+ T cells or AsGM1+ cells abrogated the effect of IL-4 on lung metastases, whereas depletion of CD4+ T cells had no impact. These data indicate that CD8+ T cells and AsGM1+ cells are involved in IL-4-induced regression of established renal cell carcinoma.  相似文献   

12.
Asiatic acid (AA), a triterpene, is known to be cytotoxic to several tumor cell lines. AA induces dose- and time-dependent cell death in U-87 MG human glioblastoma. This cell death occurs via both apoptosis and necrosis. The effect of AA may be cell type-specific as AA-induced cell death was mainly apoptotic in colon cancer RKO cells. AA-induced glioblastoma cell death is associated with decreased mitochondrial membrane potential, activation of caspase-9 and -3, and increased intracellular free Ca2+. Although treatment of glioblastoma cells with the caspase inhibitor zVAD-fmk completely abolished AA-induced caspase activation, it did not significantly block AA-induced cell death. AA-induced cell death was significantly prevented by an intracellular Ca2+ inhibitor, BAPTA/AM. Taken together, these results indicate that AA induces cell death by both apoptosis and necrosis, with Ca2+-mediated necrotic cell death predominating.  相似文献   

13.
Natural killer cells mediate spontaneously secretory/necrotic killing against rare leukemia cell lines and a nonsecretory/apoptotic killing against a large variety of tumor cell lines. The molecules involved in nonsecretory/apoptotic killing are largely undefined. In the present study, freshly isolated, nonactivated, human NK cells were shown to express TNF, lymphotoxin (LT)-alpha, LT-beta, Fas ligand (L), CD27L, CD30L, OX40L, 4-1BBL, and TNF-related apoptosis-inducing ligand (TRAIL), but not CD40L or nerve growth factor. Complementary receptors were demonstrated to be expressed on the cell surface of solid tumor cell lines susceptible to apoptotic killing mediated by NK cells. Individually applied, antagonists of TNF, LT-alpha1beta2, or FasL fully inhibited NK cell-mediated apoptotic killing of tumor cells. On the other hand, recombinant TNF, LT-alpha1beta2, or FasL applied individually or as pairs were not cytotoxic. In contrast, a mixture of the three ligands mediated significant apoptosis in tumor cells. These findings demonstrate that human NK cells constitutively express several of the TNF family ligands and induce apoptosis in tumor cells by simultaneous engagement of at least three of these cytotoxic molecules.  相似文献   

14.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL/APO-2L), a member of the tumor necrosis factor (TNF) gene family, is considered as one of the most promising cancer therapeutic agents due to its ability to selectively kill tumor cells. Although microenvironments of solid tumors (hypoxia, nutrient deprivation, and low pH) often affect the effectiveness of chemotherapy, few studies have been reported on the relationship between tumor microenvironments and TRAIL. In this study, we investigated whether low extracellular pH affects TRAIL-induced apoptotic death. When human prostate carcinoma DU145 cells were treated with 200 ng/ml His-tagged TRAIL for 4 h, the survival was approximately 10% at pH 6.3-6.6 and 61.3% at pH 7.4. Similar results were observed in human colorectal carcinoma CX-1 cell line. The TRAIL-mediated activation of caspase, cytochrome c release, and poly (ADP-ribose) polymerase (PARP) cleavage was promoted at low extracellular pH. Immunoprecipitation followed by western blot analysis shows that low extracellular pH enhances the association of truncated Bid with Bax during treatment with TRAIL. Western blot analysis also shows that the low extracellular pH-enhanced TRAIL cytotoxicity does not involve modulation of the levels of TRAIL receptors (DR4, DR5, and DcR2), FLIP, inhibitor of apoptosis (IAP), and Bcl-2. Overexpression of Bcl-2 effectively prevented low extracellular pH-augmented TRAIL cytotoxicity. Taken together, we propose that TRAIL-mediated cytotoxicity is greatly enhanced in low pH environments by promoting caspase activation.  相似文献   

15.
Formation of the pro-apoptotic death-inducing signaling complex (DISC) can be initiated in cancer cells via binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to its two pro-apoptotic receptors, TRAIL receptor 1 (TRAIL-R1) and TRAIL-R2. Primary components of the DISC are trimerized TRAIL-R1/-R2, FADD, caspase 8 and caspase 10. The anti-apoptotic protein FLIP can also be recruited to the DISC to replace caspase 8 and form an inactive complex. Caspase 8/10 processing at the DISC triggers the caspase cascade, which eventually leads to apoptotic cell death. Besides TRAIL, TRAIL-R1- or TRAIL-R2-selective variants of TRAIL and agonistic antibodies have been designed. These ligands are of interest as anti-cancer agents since they selectively kill tumor cells. To increase tumor sensitivity to TRAIL death receptor-mediated apoptosis and to overcome drug resistance, TRAIL receptor ligands have already been combined with various therapies in preclinical models. In this review, we discuss factors influencing the initial steps of the TRAIL apoptosis signaling pathway, focusing on mechanisms modulating DISC assembly and caspase activation at the DISC. These insights will direct rational design of drug combinations with TRAIL receptor ligands to maximize DISC signaling.  相似文献   

16.
A major concern in cancer therapy is resistance of tumors such as glioblastoma to current treatment protocols. Here, we report that transfer of the gene encoding second mitochondria-derived activator of caspase (Smac) or Smac peptides sensitized various tumor cells in vitro and malignant glioma cells in vivo for apoptosis induced by death-receptor ligation or cytotoxic drugs. Expression of a cytosolic active form of Smac or cell-permeable Smac peptides bypassed the Bcl-2 block, which prevented the release of Smac from mitochondria, and also sensitized resistant neuroblastoma or melanoma cells and patient-derived primary neuroblastoma cells ex vivo. Most importantly, Smac peptides strongly enhanced the antitumor activity of Apo-2L/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in an intracranial malignant glioma xenograft model in vivo. Complete eradication of established tumors and survival of mice was only achieved upon combined treatment with Smac peptides and Apo2L/TRAIL without detectable toxicity to normal brain tissue. Thus, Smac agonists are promising candidates for cancer therapy by potentiating cytotoxic therapies.  相似文献   

17.
Disappearance of antigen presenting cells (APC) from the lymph node occurs following antigen specific interactions with T cells. We have investigated the regulation of CD95 (Apo-1/Fas) induced apoptosis during murine dendritic cell (DC) development. Consistent with the moderate levels of CD95 surface expression and low, or absent, MHC class II expression, immature DC in bone marrow cultures were highly sensitive to CD95 induced apoptosis, but insensitive to class II mediated apoptosis. In contrast, mature splenic, epidermal and bone marrow derived DC were fully resistant to CD95 induced cell death, but sensitive to class II induced apoptosis. Although caspase 3 and 8 activation was detected in immature DC undergoing CD95L-induced apoptosis, the pan-caspase inhibitor zVAD-fmk did not inhibit the early events of CD95-induced mitochondrial depolarisation or phosphatidyl serine exposure and only partially inhibited the killing of immature DC. In contrast, zVAD-fmk was completely effective in preventing CD95L mediated death of murine thymocytes. Collectively, these data do not support a major role of CD95: CD95L ligation in apoptosis of mature DC, but rather emphasise the existence of distinct pathways for the elimination of DC at different stages of maturation.  相似文献   

18.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In the previous study [Yoo and Lee, 2007], we have reported that hyperthermia could enhance the cytotoxicity of TRAIL-induced apoptosis. We observed in human colorectal cancer cell line CX-1 that TRAIL-induced apoptotic death and also that mild hyperthermia promoted TRAIL-induced apoptotic death through caspase activation and cytochrome-c release. Although its effects in vivo are not clear, hyperthermia has been used as an adjunctive therapy for cancer. Hyperthermia is often accompanied by chemotherapy to enhance its effect. In this study, CX-1 colorectal adenocarcinoma cells were treated with TRAIL concurrently with hyperthermia and oxaliplatin or melphalan. To evaluate the cell death effects on tumor cells via hyperthermia and TRAIL and chemotherapeutic agents, FACS analysis, DNA fragmentation, and immunoblottings for PARP-1 and several caspases and antiapoptotic proteins were performed. Activities of casapse-8, caspase-9, and caspase-3 were also measured in hyperthermic condition. Interestingly, when analyzed with Western blot, we detected little change in the intracellular levels of proteins related to apoptosis. Clonogenic assay shows, however, that chemotherapeutic agents will trigger cancer cell death, either apoptotic or non-apoptotic, more efficiently. We demonstrate here that CX-1 cells exposed to 42 degrees C and chemotherapeutic agents were sensitized and died by apoptotic and non-apoptotic cell death even in low concentration (10 ng/ml) of TRAIL.  相似文献   

19.
肿瘤坏死因子相关凋亡诱导配体(TRAIL)可激活胱天蛋白酶(caspase)家族蛋白系列级联反应,最终诱导细胞凋亡. TRAIL选择性地诱导肿瘤细胞凋亡而不损伤正常细胞,使其成为治疗癌症的潜在药物靶点. 目前已知,细胞型FADD样白介素-1-β转换酶抑制蛋白(c FLIP)和凋亡抑制蛋白(IAPs)是肿瘤细胞对TRAIL耐受的主要原因.胱天蛋白酶原-8(procaspase-8)是TRAIL凋亡信号途径中的凋亡起始蛋白. 然而近年发现,在某些肿瘤细胞中procaspase-8功能失调常会阻碍凋亡信号传导,使肿瘤细胞对TRAIL诱导的凋亡产生耐受. 本文就其机制进行概述.  相似文献   

20.
肿瘤坏死因子相关凋亡诱导配体研究进展   总被引:1,自引:0,他引:1  
TRAIL(又称为Apo2L)是TNF超家族的新成员。它可以选择性诱导肿瘤细胞的凋亡,而对正常细胞无凋亡作用本介绍了TRAIL的结构和功能、凋亡途径、肝毒性研究及应用前景。TRAIL很可能成为新一代的抗肿瘤制剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号