首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The results of studies on assimilate and water transport in the developing caryopsis of rice are summarised. Evidence is presented for a symplastic movement of solutes as far as the aleurone layer. However, transport into the apoplast at the nucellus/aleurone interface appears to be a necessary step due to the absence of plasmodesmata at this site. It is suggested that water leaves the caryopsis during grain filling by the isolated cell walls of the pigment strand, the suberised walls of these cells functioning to isolate the apoplast from the symplast and thereby allowing opposing fluxes of water and assimilates to occur in the dorsal region of the grain.  相似文献   

2.
The high operational and capital costs of polymer electrolyte water electrolysis technology originate from limited catalyst utilization and the use of thick membrane electrolytes. This is due to the coarse surface structure of the state‐of‐the‐art titanium porous transport layer materials used. Therefore, a series of materials with three different microporous layers (MPLs) with advanced interface properties are fabricated and characterized. It is shown that these sintered multilayer structures, made from economically viable titanium powders, have improved interface properties with low surface roughness, as characterized by X‐ray laboratory and synchrotron‐based tomographic microscopy. The transport layer materials provide superior electrochemical performance in comparison to conventional single‐layer structures, with up to three times higher catalyst layer utilization and a ≈60 mV decrease in (anodic) mass transport overpotential at 2 A cm?2. The MPLs combine preferential surface properties with high open porosity and low tortuosity of sinter materials, enabling for the first time the use of thin membranes, in combination with anodic titanium transport layers. The fundamental mechanism of the MPL effect is elucidated and shown to be based on a homogeneous contact pressure distribution, resulting in high catalyst utilization and low mass transport losses.  相似文献   

3.
The movement of fluid and solutes across biological membranes facilitates the transport of nutrients for living organisms and maintains the fluid and osmotic pressures in biological systems. Understanding the pressure balances across membranes is crucial for studying fluid and electrolyte homeostasis in living systems, and is an area of active research. In this study, a set of enhanced Kedem-Katchalsky (KK) equations is proposed to describe fluxes of water and solutes across biological membranes, and is applied to analyze the relationship between fluid and osmotic pressures, accounting for active transport mechanisms that propel substances against their concentration gradients and for fixed charges that alter ionic distributions in separated environments. The equilibrium analysis demonstrates that the proposed theory recovers the Donnan osmotic pressure and can predict the correct fluid pressure difference across membranes, a result which cannot be achieved by existing KK theories due to the neglect of fixed charges. The steady-state analysis on active membranes suggests a new pressure mechanism which balances the fluid pressure together with the osmotic pressure. The source of this pressure arises from active ionic fluxes and from interactions between solvent and solutes in membrane transport. We apply the proposed theory to study the transendothelial fluid pressure in the in vivo cornea, which is a crucial factor maintaining the hydration and transparency of the tissue. The results show the importance of the proposed pressure mechanism in mediating stromal fluid pressure and provide a new interpretation of the pressure modulation mechanism in the in vivo cornea.  相似文献   

4.
With water as the elution solvent, zwitterionic solutes and polyols were retained on HPLC columns, more than was water, by totally hydrophobic packing materials. Relative retentions were systematically affected by oxygen functional groups in the packing material, explicable as specific retention of water. Reproducible elution sequences of 20 solutes at a variety of hydrophobic surfaces (aromatic and both long- and short-alkyl aliphatic surfaces) showed there is a general process, consistent with interactions with hydration water at the surface having solvent properties distinct from bulk water. Early eluting solutes included glycine, sarcosine and taurine. Glycine betaine followed both these and N,N-dimethylglycine. The natural betaines propionobetaine and dimethylsulfoniopropionate also preceded glycine betaine. Dimethylsulfoxide was strongly retained, as (to a lesser extent) was proline betaine. Polyols eluted in the sequence sorbitol, trehalose, glycerol. Changes in the chemical nature of the surface or base material affected relative retentions of water and solutes. The presence of hydrogen-bonding functions increased retention of polyols, as well as water, relative to zwitterionic solutes. Specific effects with some solutes may be related to inconsistencies seen in biological systems. Pressures up to 8 MPa did not affect relative retention, constraining models based on the formation of low-density water.  相似文献   

5.
A series of salt‐templated carbons with gradually changed pore structure and their corresponding nitrogen‐doped analogues are synthesized and applied as model systems to thoroughly study the ion migration dynamics and energy storage mechanism in hierarchical pore structures with different surface functionalization in electric double‐layer capacitors with a model ionic liquid electrolyte (1‐ethyl‐3‐methylimidazolium tetrafluoroborate). Ion conformation and phase variation during the charging/discharging process and their contribution to the energy storage mechanism are investigated. A significant contribution of structural changes in the bulk of the ionic liquid electrolyte strengthening charge storage in the electric double‐layer beyond the usual expectations is uncovered. Furthermore, a quantitative model of the structure–dynamics relationship is proposed, in which the optimal ratio of mesopores to micropores is determined to be 3:1 in pore volume. Below this ratio, the ion dynamics can be promoted by increasing mesopore content and/or doping with nitrogen, while those parameters show only minor influence when the ratio is surpassing 3:1. Nitrogen doping in this system improves the rate capability (due to the enhanced ion transport dynamics) rather than the amount of energy stored.  相似文献   

6.
The contribution of water-filled, selective membrane pores (water channels) is integrated into a general concept of water transport in plant tissue. The concept is based on the composite anatomical structure of tissues which results in a composite transport pattern. Three main pathways of water flow have been distinguished, ie the apoplastic, symplastic and transcellular (vacuolar) paths. Since the symplastic and transcellular components can not be distinguished experimentally, these components are summarized as a cell-to-cell component. Water channel activity may control the overall water flow across tissues provided that the contribution of the apoplastic component is relatively low. The composite transport model has been applied to roots where most of the data are available. Comparison of the hydraulic conductivity at the root cell and organ levels shows that, depending on the species, there may be a dominating cell-to-cell or apoplastic water flow. Most remarkably, there are differences in the hydraulic conductivity of roots which depend on the nature of the force used to drive water flows (osmotic or hydrostatic pressure gradients). This is predicted by the model. The composite transport model explains low reflection coefficients of roots, the variability in root hydraulic resistance and differences between herbaceous and woody species. It is demonstrated that there is also a composite transport of water at the membrane level (water channel arrays vs bilayer arrays). This results in low reflection coefficients of plasma membranes for certain test solutes as derived for isolated internodes of Chara. The titration of water channel activity in this alga with mercurials and its dependence on changes in temperature or external concentration show that water channels do not exclusively transport water. Rather, they are permeable to relatively big uncharged organic solutes. The result indicates that, at least for Chara, the concept of an exclusive transport of water across water channels has to be questioned.  相似文献   

7.
The objective of this study was to investigate the impact of bacterial biomass on the sorption and transport of three solutes (quinoline, naphthalene, and 45Ca) in a subsurface soil. Miscible displacement techniques were employed to measure sorption and transport of the above compounds during steady, saturated water flow in sterile and/or bacterium-inoculated soil columns. The soil was inoculated with either a quinoline-degrading bacterium, Pseudomonas sp. 3N3A isolate, or its mutant isolate, B53, which does not degrade quinoline. In soil columns inoculated with the B53 and 3N3A isolates, quinoline sorption was reduced by about 60 and 20%, respectively. In contrast, 45Ca sorption was minimally reduced, which indicated that biomass did not significantly alter the cation-exchange capacity of the soil. Biomass impacts on sorption were solute specific, even when the sorption mechanism for both quinoline and 45Ca was similar. Thus, the differential response is attributed to biomass-induced changes in quinoline speciation; an increase in pH at the sorbent-water interface would result in a larger proportion of the neutral species and a decrease in sorption. Sorption of naphthalene was reduced by about 30%, which was attributed to accessibility of hydrophobic regions. Minimal biosorption of all solutes indicated negligible biofacilitated transport. Alteration of the soil surfaces upon addition of bacterial biomass reduced sorption of quinoline and naphthalene, thereby enhancing transport.  相似文献   

8.
Long-distance transport in non-vascular plants   总被引:4,自引:0,他引:4  
Many macroalgae have significant spatial differentiation involving higher rate resource use at a site than of acquisition of that resource from the environment at that site. Long‐distance symplasmic transport of solutes occurs in some large green algae where the solutes are moved in streaming cytoplasm. In some large brown algae there is evidence of long‐distance symplasmic transport of organic C and other solutes. Structural and physiological data suggest that while the transport in ‘sieve tubes’ of Macrocystis might be by a Munch pressure flow mechanism the transport in many other brown algae is less likely to be by this mechanism. Less is known of long‐distance symplasmic transport in red algae. In terrestrial bryophytes transpiration occurs and in some liverworts and many mosses (but not in hornworts) there are files of dead cells in their tissues which may, and in some cases certainly, function in long‐distance apoplasmic water transport. The hydraulic conductivity of these conduits is poorly characterized. Long‐distance symplasmic transport in some mosses have been characterized both structurally and physiologically, but in other mosses and in liverworts the evidence is only structural. Most of these symplasmic transport pathways seem to have a high resistance to flow.  相似文献   

9.
On the basis of the currently accepted model for the cell membrane structure, a physico-chemical model for mediated transport is developed and solved for the case of polar non-electrolyte migration through the cell membrane. The model considers the interstitial space defined by the transport protein subunits to be the migration pathway for polar solutes. A Langmuir-type adsorption equilibrium is assumed at the interfaces and a multicomponent diffusion mechanism of solute and water is postulated within the migration pathway, where the polar residues of the transport protein represent another component of the system. Membrane selectivity is governed by the adsorption constants, which are shown to affect strongly the kinetics of transport. Isosmotic transport and the volume change of the cell are important features incorporated in the model, which is shown to fulfill the peculiar properties of facilitated diffusion systems. It is concluded that the same type of pathway can be used for the transport of other polar solutes through existing or induced hydrophilic channels, for which a similar approach is suggested.  相似文献   

10.
Pulmonary epithelial sieving of small solutes in rat lungs   总被引:3,自引:0,他引:3  
Transport and consumption of glucose from the air spaces of isolated, fluid-filled lungs can result in significantly lower glucose concentrations in the air spaces than in the perfusate compartment (11). This concentration difference could promote the osmotic movement of water from the air spaces to the perfusate, but the rate of fluid extraction from the air spaces would then be limited by the rates of electrolyte transport through the epithelium. In the present study, measurements were made of solute and water losses from the air spaces of fluid-filled rat lungs and the transport of these solutes and water into the vasculature after addition of hypertonic glucose or sucrose to the perfusate. Increases in the concentrations of Na+, Cl-, K+, and labeled mannitol in the air space were initially comparable to those of albumin labeled with Evans blue. Similarly, decreases in electrolyte concentrations in the perfusate were comparable to those of labeled albumin, indicating that very little solute accompanied the movement of water out of the lungs. Nor was evidence found that exposure of the vasculature to hypertonic glucose resulted in an increase in the rate at which fluid was reabsorbed from the air spaces over a 1-h interval, aside from an initial, abrupt loss of solute-free water from the lungs. These observations suggest that perfusion of fluid-filled lungs with hypertonic solutions of small solutes results in the extraction of water from the air spaces and pulmonary parenchyma across membranes that resist the movement of electrolytes and other lipophobic solutes.  相似文献   

11.
Davison  W. 《Hydrobiologia》1982,91(1):463-471
A model is presented which describes the transport of iron and manganese in the vicinity of a redox boundary. It is based on input of a particulate component, to form a point source, from which soluble species diffuse along a concentration gradient. The shapes of concentration-depth profiles in marine and freshwater sediments and water columns are reviewed and discussed in terms of the model. Transport, either entirely within a water column or within the sediment, may be simply treated because the rate of vertical transport can be regarded as constant. The discontinuity in the rate of vertical transport which occurs at the sediment-water interface can provide a complicated example of the model, especially when it coincides with the redox boundary. Authigenic mineral formation processes can modify the model, sometimes to such an extent that it becomes invalid. This is particularly true for soluble iron profiles in organically rich marine sediments. Sampling interval is critical to the resultant profile shape and must be relevant to the particular environment, e.g. metres in water columns and millimetres in sediments. The differences in the rates of reduction and oxidation of iron and manganese tend to modify both the position of the profile with respect to the redox-cline and its stage of development in a seasonally anoxic system. It is these factors which determine why most of the iron which reaches a sediment is permanently incorporated whereas manganese is re-released. This mechanism determines the average ratio of iron to manganese in sedimentary rocks. The development of peaked profile shapes in water columns implies that under certain conditions dissolved iron and manganese may be transported from the water column to the pore waters of the sediment.  相似文献   

12.
The nodulin 26-like intrinsic protein family is a group of highly conserved multifunctional major intrinsic proteins that are unique to plants, and which transport a variety of uncharged solutes ranging from water to ammonia to glycerol. Based on structure-function studies, the NIP family can be subdivided into two subgroups (I and II) based on the identity of the amino acids in the selectivity-determining filter (ar/R region) of the transport pore. Both subgroups appear to contain multifunctional transporters with low to no water permeability and the ability to flux multiple uncharged solutes of varying sizes depending upon the composition of the residues of the ar/R filter. NIPs are subject to posttranslational phosphorylation by calcium-dependent protein kinases. In the case of the family archetype, soybean nodulin 26, phosphorylation has been shown to stimulate its transport activity and to be regulated in response to developmental as well as environmental cues, including osmotic stresses. NIPs tend to be expressed at low levels in the plant compared to other MIPs, and several exhibit cell or tissue specific expression that is subject to spatial and temporal regulation during development.  相似文献   

13.
The nodulin 26-like intrinsic protein family is a group of highly conserved multifunctional major intrinsic proteins that are unique to plants, and which transport a variety of uncharged solutes ranging from water to ammonia to glycerol. Based on structure-function studies, the NIP family can be subdivided into two subgroups (I and II) based on the identity of the amino acids in the selectivity-determining filter (ar/R region) of the transport pore. Both subgroups appear to contain multifunctional transporters with low to no water permeability and the ability to flux multiple uncharged solutes of varying sizes depending upon the composition of the residues of the ar/R filter. NIPs are subject to posttranslational phosphorylation by calcium-dependent protein kinases. In the case of the family archetype, soybean nodulin 26, phosphorylation has been shown to stimulate its transport activity and to be regulated in response to developmental as well as environmental cues, including osmotic stresses. NIPs tend to be expressed at low levels in the plant compared to other MIPs, and several exhibit cell or tissue specific expression that is subject to spatial and temporal regulation during development.  相似文献   

14.
Sieve element unloading: cellular pathway, mechanism and control   总被引:14,自引:0,他引:14  
The transport and distribution of phloem – mobile solutes is predominantly determined by transport processes located at the sink end of the source – transport – sink system. Transport across the sieve element boundary, sieve element unloading, is the first of a series of sink transport processes. Unloading of solutes from the sieve elements may follow an apo- or symplastic route. It is speculated that the unloading pathway is integrated with sink function and that apoplastic unloading is restricted to situations in which movement through the symplast is not compatible with sink function. These situations include axial transport and storage of osmotically active solutes against concentration and turgor gradients between the sieve elements and sink cells. Coupled with alteration in sink function, the cellular pathway of unloading can switch in stems and possibly other sinks. Experimental systems and approaches used to elucidate the mechanism of sieve element unloading are reviewed. Unloading fluxes to the apoplast can largely be accounted for by membrane diffusion in axial sinks. However, the higher fluxes in storage sinks suggests dependence on some form of facilitated transport. Proton sucrose symport is assessed to be a possible mechanism for facilitated efflux of solutes across the sieve element plasma membrane to the sink apoplast. Unloading through the symplast may occur by diffusion or mass flow. The latter mechanism serves to dissipate phloem water and hence prevent the potential elevation of sieve element turgor that would otherwise slow phloem import into the sink. The possibility of energised plasmodesmatal transport is raised. Sieve element unloading must be integrated with subsequent compartmentation and metabolism of the unloaded solute. Solute levels are an obvious basis for control of sieve element unloading, but are found to offer limited scope for a mass action mechanism. Apoplastic, cellular pathway, sieve element, solute transport, symplastic. Translated into a turgor signal, solute levels could regulate the rate of unloading, metabolism and compartmentation forming part of a turgor homeostat irrespective of the pathway of unloading.  相似文献   

15.
1. In three previous publications it had been shown that electrolytes influence the rate of diffusion of pure water through a collodion membrane into a solution in three different ways, which can be understood on the assumption of an electrification of the water or the watery phase at the boundary of the membrane; namely, (a) While the watery phase in contact with collodion is generally positively electrified, it happens that, when the membrane has received a treatment with a protein, the presence of hydrogen ions and of simple cations with a valency of three or above (beyond a certain concentration) causes the watery phase of the double layer at the boundary of membrane and solution to be negatively charged. (b) When pure water is separated from a solution by a collodion membrane, the initial rate of diffusion of water into a solution is accelerated by the ion with the opposite sign of charge and retarded by the ion with the same sign of charge as that of the water, both effects increasing with the valency of the ion and a second constitutional quantity of the ion which is still to be defined. (c) The relative influence of the oppositely charged ions, mentioned in (b), is not the same for all concentrations of electrolytes. For lower concentrations the influence of that ion usually prevails which has the opposite sign of charge from that of the watery phase of the double layer; while in higher concentrations the influence of that ion begins to prevail which has the same sign of charge as that of the watery phase of the double layer. For a number of solutions the turning point lies at a molecular concentration of about M/256 or M/512. In concentrations of M/8 or above the influence of the electrical charges of ions mentioned in (b) or (c) seems to become less noticeable or to disappear entirely. 2. It is shown in this paper that in electrical endosmose through a collodion membrane the influence of electrolytes on the rate of transport of liquids is the same as in free osmosis. Since the influence of electrolytes on the rate of transport in electrical endosmose must be ascribed to their influence on the quantity of electrical charge on the unit area of the membrane, we must conclude that the same explanation holds for the influence of electrolytes on the rate of transport of water into a solution through a collodion membrane in the case of free osmosis. 3. We may, therefore, conclude, that when pure water is separated from a solution of an electrolyte by a collodion membrane, the rate of diffusion of water into the solution by free osmosis is accelerated by the ion with the opposite sign of charge as that of the watery phase of the double layer, because this ion increases the quantity of charge on the unit area on the solution side of the membrane; and that the rate of diffusion of water is retarded by the ion with the same sign of charge as that of the watery phase for the reason that this ion diminishes the charge on the solution side of the membrane. When, therefore, the ions of an electrolyte raise the charge on the unit area of the membrane on the solution side above that on the side of pure water, a flow of the oppositely charged liquid must occur through the interstices of the membrane from the side of the water to the side of the solution (positive osmosis). When, however, the ions of an electrolyte lower the charge on the unit area of the solution side of the membrane below that on the pure water side of the membrane, liquid will diffuse from the solution into the pure water (negative osmosis). 4. We must, furthermore, conclude that in lower concentrations of many electrolytes the density of electrification of the double layer increases with an increase in concentration, while in higher concentrations of the same electrolytes it decreases with an increase in concentration. The turning point lies for a number of electrolytes at a molecular concentration of about M/512 or M/256. This explains why in lower concentrations of electrolytes the rate of diffusion of water through a collodion membrane from pure water into solution rises at first rapidly with an increase in concentration while beyond a certain concentration (which in a number of electrolytes is M/512 or M/256) the rate of diffusion of water diminishes with a further increase in concentration.  相似文献   

16.
We have systematically characterized, by aqueous column chromatography on a size exclusion cross-linked dextran gel (Sephadex G-10), 12 solutes, 11 of which are known to affect protein stability. Six are chaotropes (water structure breakers) and destabilize proteins, while five are polar kosmotropes (polar water structure makers) and stabilize proteins. Analysis of the chromatographic behavior of these neutral (ethylene glycol, urea), positively charged (Tris, guanidine, as the hydrochloride salts) and negatively charged (SO2-4, HPO2-4, F-, Cl-, Br-, Cl3CCO-2, I-, SCN-, as the sodium salts, in order of elution) solutes at pH 7 as a function of sample concentration (up to 0.6 M), supporting electrolyte, and temperature yields four conclusions, based largely on the behavior of the anions. Chaotropes adsorb to the gel according to their position in the Hofmeister series, with the most chaotropic species adsorbing most strongly. ++Chaotropes adsorb to the gel less strongly in the presence of chaotropes (a salting in effect) and more strongly in the presence of polar kosmotropes (a salting out effect). Polar kosmotropes do not adsorb to the gel, and are sieved through the gel according to their position in the Hofmeister series, with the most kosmotropic species having the largest relative hydrodynamic radii. The hydrodynamic radii of polar kosmotropes is increased by chaotropes and decreased by polar kosmotropes. These results suggest that a chaotrope interacts with the first layer of immediately adjacent water molecules somewhat less strongly than would bulk water in its place; a polar kosmotrope, more strongly.  相似文献   

17.
The proposal that liquid water consists of microdomains of rapidly-exchanging polymorphs of high and low density is examined for its impact upon roles of water in biology. It is assumed that the two polymorphs persist in solution and adjacent to surfaces and that solutes partition asymmetrically between them. It transpires that chaotropes are solutes which partition preferentially into low density water and displace the water equilibrium toward the high density polymorph. Kosmotropes. both ionic and non-polar, partition into high density water and induce low density water. Displacement of the water equilibrium at constant temperature and pressure has a thermodynamic cost which can be high. This appears to be a dominant factor in folding of proteins and DNA, aggregation of biopolymers and insolubility of non-polar kosmotropes. Cells control both the concentration of proteins and the selection of small solutes to produce an intracellular environment most conducive to co-ordinated enzyme function. Intracellular water has similar microdomains to bulk water, but surfaces and solutes redistribute them. Average properties, as measured by NMR are similar, but local properties on a nm scale may differ widely. Enzymes apparently use these local differences to activate cations for transport, induce movement and for synthesis.  相似文献   

18.
The presence of turfgrass thatch complicates the sorption and transport of water soluble pesticides because the surface-applied pesticides must pass through an organic-rich thatch layer prior to entering the soil. The study was conducted (1) to determine the impact of zoysiagrass thatch (Zoy-sia japonica Steud.) on dicamba (3,6-dichloro-2-methoxy benzoic acid) transport through soil columns, and (2) to evaluate the effectiveness of linear equilibrium (LEM), two site nonequilibrium (2SNE) and one site nonequilibrium (1SNE) models to predict dicamba transport through columns containing a surface layer of thatch and columns devoid of thatch. The equilibrium sorption isotherms of 14C dicamba to homogenized samples of zoysiagrass thatch and a Sassafras loamy sand soil (fine loamy, mixed mesic, Typic Hapludult) were determined. Following the application of bromide to determine transport parameters, 0.56?kg dicamba ha?1 was surface applied to undisturbed soil columns containing a surface layer of thatch and columns devoid of thatch and leachate samples collected for 12?h under steady-state unsaturated conditions. Zoysiagrass thatch (Kf = 0.82) had a three times greater sorption capacity than the soil (Kf = 0.28) beneath the thatch. Dicamba leaching for columns with thatch layers was ca. 21% less than soil columns devoid of thatch. When dicamba breakthrough curves were fitted to the different forms of the convective dispersive equation, the 2SNE model simulated dicamba transport better than LEM and 1SNE models, indicating the presence of two-site nonequilibrium sorption. Indications are that turfgrass thatch may have significant effects on dicamba leaching that presently used regulatory models based on LEM approach do not adequately consider.  相似文献   

19.
Summary Vasopressin activates a number of transport systems in the toad bladder, including the systems for water, urea, sodium, and other small solutes. Evidence from experiments with selective inhibitors indicates that these transport systems are to a large extent functionally independent. In the present study, we show that the transport systems can be separately activated. Low concentrations of vasopressin (1 mU/ml) activate urea transport with virtually no effect on water transport. This selective effect is due in part to the relatively greater inhibitory action of endogenous prostaglandins on water transport. Low concentrations of 8-bromoadenosine cyclic AMP, on the other hand, activate water, but not urea transport. In additional experiments, we found that varying the ratio of exogenous cyclic AMP to theophylline activated water or urea transport selectively. These studies support the concept of independently controlled systems for water and solute transport, and provide a basis for the study of individual luminal membrane pathways for water and solutes in the accompanying paper.  相似文献   

20.
Only minimal quantities of ingested and normally secreted solutes and water are excreted in the stool. This near 100% bioavailability means that the diet and kidneys are relatively more important determinants of solute, water and acid-base balance than the intestine. Intestinal bioavailability is based on excess transport capacity under normal conditions and the ability to adapt to altered or abnormal conditions. Indeed, the regulatory system of the intestine is as complex, segmented and multi factorial as in the kidney. Alterations in the rate and intestinal site of absorption reflect this regulation, and the diagnosis and treatment of various clinical abnormalities depend on the integrity of intestinal absorptive processes. However, the basis for this regulation an bioavailability are uncertain. Perhaps they had survival value for mammals, a phylogenic class that faced the twin threats of intestinal pathogens and shortages of solutes and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号