首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Multiple modes of RNA recognition by zinc finger proteins   总被引:3,自引:0,他引:3  
  相似文献   

5.
One simple and widespread method to create engineered zinc fingers targeting the desired DNA sequences is to modularly assemble multiple finger modules pre-selected to recognize each DNA triplet. However, it has become known that a sufficient DNA binding affinity is not always obtained. In order to create successful zinc finger proteins, it is important to understand the context-dependent contribution of each finger module to the DNA binding ability of the assembled zinc finger proteins. Here, we have created finger-deletion mutants of zinc finger proteins and examined the DNA bindings of these zinc fingers to clarify the contributions of each finger module. Our results indicate that not only a positive cooperativity but also a context-dependent reduction in the DNA binding activity can be induced by assembling zinc finger modules.  相似文献   

6.
High-affinity, sequence-specific DNA binding by Cys(2)-His(2) zinc finger proteins is mediated by both specific protein-base interactions and non-specific contacts between charged side-chains and the phosphate backbone. In addition, in DNA complexes of multiple zinc fingers, protein-protein interactions between the finger units contribute to the binding affinity. We present NMR evidence for another contribution to high- affinity binding, a highly specific DNA-induced helix capping involving residues in the linker sequence between fingers. Capping at the C terminus of the alpha-helix in each zinc finger, incorporating a consensus TGEKP linker sequence that follows each finger, provides substantial binding energy to the DNA complexes of zinc fingers 1-3 of TFIIIA (zf1-3) and the four zinc fingers of the Wilms' tumor suppressor protein (wt1-4). The same alpha-helix C-capping motif is observed in the X-ray structures of four other protein-DNA complexes. The structures of each of the TGEKP linkers in these complexes can be superimposed on the linker sequences in the zf1-3 complex, revealing a remarkable similarity in both backbone and side-chain conformations. The canonical linker structures from the zinc-finger-DNA complexes have been compared to the NMR structure of the TGEKP linker connecting fingers 1 and 2 in zf1-3 in the absence of DNA. This comparison reveals that additional stabilization likely arises in the DNA complexes from hydrogen bonding between the backbone amide of E3 and the side-chain O(gamma) of T1 in the linker. We suggest that these DNA-induced C-capping interactions provide a means whereby the multiple-finger complex, which must necessarily be domain-flexible in the unbound state as it searches for the correct DNA sequence, can be "snap-locked" in place once the correct DNA sequence is encountered. These observations provide a rationale for the high conservation of the TGEKP linker sequences in Cys(2)-His(2) zinc finger proteins.  相似文献   

7.
Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions -1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure-function relationships of the existing zinc finger-DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.  相似文献   

8.
9.
10.
11.
BACKGROUND: Several strategies have been reported for the design and selection of novel DNA-binding proteins. Most of these studies have used Cys(2)His(2) zinc finger proteins as a framework, and have focused on constructs that bind DNA in a manner similar to Zif268, with neighboring fingers connected by a canonical (Krüppel-type) linker. This linker does not seem ideal for larger constructs because only modest improvements in affinity are observed when more than three fingers are connected in this manner. Two strategies have been described that allow the productive assembly of more than three canonically linked fingers on a DNA site: connecting sets of fingers using linkers (covalent), or assembling sets of fingers using dimerization domains (non-covalent). RESULTS: Using a combination of structure-based design and phage display, we have developed a new dimerization system for Cys(2)His(2) zinc fingers that allows the assembly of more than three fingers on a desired target site. Zinc finger constructs employing this new dimerization system have high affinity and good specificity for their target sites both in vitro and in vivo. Constructs that recognize an asymmetric binding site as heterodimers can be obtained through substitutions in the zinc finger and dimerization regions. CONCLUSIONS: Our modular zinc finger dimerization system allows more than three Cys(2)His(2) zinc fingers to be productively assembled on a DNA-binding site. Dimerization may offer certain advantages over covalent linkage for the recognition of large DNA sequences. Our results also illustrate the power of combining structure-based design with phage display in a strategy that assimilates the best features of each method.  相似文献   

12.
C2H2型锌指蛋白是哺乳动物中数量最多的一类转录调控因子.C2H2型锌指蛋白中含有的C2H2型锌指基序多是不相同的,表明它们很可能结合不同的DNA序列,从而调控不同的基因,行使多样化的调控功能.然而,目前大多数C2H2型锌指蛋白结合的DNA序列仍不明确,这阻碍了C2H2型锌指蛋白的功能研究.目前,针对C2H2型锌指蛋白的靶序列预测已有一些初步的研究.本文介绍了C2H2型锌指基序与DNA结合的经典模式,并对C2H2型锌指蛋白靶序列预测方法中所用到的算法、训练集、金标准数据集及相应工具进行了全面系统的总结归纳,旨在丰富对C2H2型锌指蛋白靶序列预测原理和工具的认识,为C2H2型锌指蛋白靶序列的精确预测和更深入的功能研究打下基础.  相似文献   

13.
Klug A 《FEBS letters》2005,579(4):892-894
It has long been the goal of molecular biologists to design DNA-binding proteins for the specific control of gene expression. The zinc finger design is ideally suited for such purposes, discriminating between closely related sequences both in vitro and in vivo. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, zinc fingers do not and so can be linked linearly in tandem to recognize DNA sequences of different lengths, with high fidelity. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA. By fusing zinc finger peptides to repression or activation domains, genes can be selectively targeted and switched off and on. Several recent applications of such engineered zinc finger proteins (ZFPs) are described, including the activation of vascular endothelial growth factor (VEGF) in a human cell line and an animal model. Clinical trials have recently begun on using VEGF-activating ZFPs to treat human peripheral arterial disease, by stimulating vascular growth. Also in progress are pre-clinical studies using ZFPs to target the defective genes in two monogenic disorders, SCID and SCA. The aim is to replace them in each case by a correct copy from an extrachromosomal DNA donor by means of homologous recombination. Promising results are reported.  相似文献   

14.
Recent studies provide a glimpse of future potential therapeutic applications of custom-designed zinc finger proteins in achieving highly specific genomic manipulation. Custom-design of zinc finger proteins with tailor-made specificity is currently limited by the availability of information on recognition helices for all possible DNA targets. However, recent advances suggest that a combination of design and selection method is best suited to identify custom zinc finger DNA-binding proteins for known genome target sites. Design of functionally self-contained zinc finger proteins can be achieved by (a) modular protein engineering and (b) computational prediction. Here, we explore the novel functionality obtained by engineered zinc finger proteins and the computational approaches for prediction of recognition helices of zinc finger proteins that can raise our ability to re-program zinc finger proteins with desired novel DNA-binding specificities.  相似文献   

15.
Zinc finger modules are capable of specifically interacting with DNA that contains 5-methylcytosine (5-mC) in place of cytosine, suggesting that zinc finger-DNA binding could be regulated by extrinsic methylation of DNA. Here, we have used phage display to engineer zinc finger proteins that detect and discriminate DNA methylation by the prokaryotic enzymes HaeIII and HhaI. In these systems, zinc finger-DNA complexes are induced by DNA modification using the appropriate enzyme, which can therefore act as a switch. To further develop the specificity of the switch, zinc finger discrimination between 5-mC and thymine in DNA sequences is demonstrated despite the presence of the characteristic major groove methyl group that is common to both bases. Specificity was achieved using a DNA-binding strategy involving synergy between adjacent zinc fingers. We propose that engineered zinc fingers that recognise particular DNA modifications, such as sequence-specific DNA methylation, could be integrated into artificial regulatory circuits for the control of gene expression and other biological processes.  相似文献   

16.
17.
BACKGROUND: Zinc finger domains have traditionally been regarded as sequence-specific DNA binding motifs. However, recent evidence indicates that many zinc fingers mediate specific protein-protein interactions. For instance, several zinc fingers from FOG family proteins have been shown to interact with the N-terminal zinc finger of GATA-1. RESULTS: We have used NMR spectroscopy to determine the first structures of two FOG family zinc fingers that are involved in protein-protein interactions: fingers 1 and 9 from U-shaped. These fingers resemble classical TFIIIA-like zinc fingers, with the exception of an unusual extended portion of the polypeptide backbone prior to the fourth zinc ligand. [15N,(1)H]-HSQC titrations have been used to define the GATA binding surface of USH-F1, and comparison with other FOG family proteins indicates that the recognition mechanism is conserved across species. The surface of FOG-type fingers that interacts with GATA-1 overlaps substantially with the surface through which classical fingers typically recognize DNA. This suggests that these fingers could not contact both GATA and DNA simultaneously. In addition, results from NMR, gel filtration, and sedimentation equilibrium experiments suggest that the interactions are of moderate affinity. CONCLUSIONS: Our results demonstrate unequivocally that zinc fingers comprising the classical betabetaalpha fold are capable of mediating specific contacts between proteins. The existence of this alternative function has implications for the prediction of protein function from sequence data and for the evolution of protein function.  相似文献   

18.
G H Jacobs 《The EMBO journal》1992,11(12):4507-4517
The CC/HH zinc finger is a small independently folded DNA recognition motif found in many eukaryotic proteins, which ligates zinc through two cysteine and two histidine ligands. A database of 1340 zinc fingers from 221 proteins has been constructed and a program for analysis of aligned sequences written. This paper describes sequence analysis aimed at determining the amino acid positions that recognize the DNA bases, by comparing two types of sequence variation. Using the idea that long runs of adjacent zinc fingers have arisen from internal gene duplication, the conservation of each position of the finger within the runs was calculated. The conservation of each position of the finger between homologous proteins from different species was also noted. A correlation of the two types of conservation showed clusters of related amino acids. One cluster of three positions was found to be especially variable within long runs, but highly conserved between corresponding fingers of homologous proteins; these positions are predicted to be the base contact positions. They match the amino acid positions that contact the bases in the co-crystal structure determined by Pavletich and Pabo [Science, 240, 809-817 (1991)]. An adjacent cluster of four positions on the plot may also be associated with DNA binding. This analysis shows that the base recognition positions can be identified even in the absence of a known structure for a zinc finger. These results are applicable to zinc fingers where the structure of the complex is unknown, in particular suggesting that the individual finger--DNA interaction seen in the Zif268--DNA structure has been conserved in many zinc finger--DNA interactions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号