首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may be responsible for the cleavage of the Mtx protein. Disruption of the protease gene did not increase the larvicidal activity of the recombinant strain against Aedes aegypti and Culex pipiens. Synthesis of the Cry11A and Cry11Ba toxins made the recombinant strains toxic to A. aegypti larvae to which the parental strain was not toxic. The strain containing Cry11Ba was more toxic than strains containing the added Cry11A or both Cry11A and Cry11Ba. The production of the two toxins together with the binary toxin did not significantly increase the toxicity of the recombinant strain to susceptible C. pipiens larvae. However, the production of Cry11A and/or Cry11Ba partially overcame the resistance of C. pipiens SPHAE and Culex quinquefasciatus GeoR to B. sphaericus strain 2297.  相似文献   

2.
Expression of a chitinase gene, chiAC, from Bacillus thuringiensis in B. sphaericus 2297 using the binary toxin promoter yielded a recombinant strain that was 4,297-fold more toxic than strain 2297 against resistant Culex quinquefasciatus. These results show that this chitinase can synergize the toxicity of the binary toxin against mosquitoes and thus may be useful in managing mosquito resistance to B. sphaericus.  相似文献   

3.
We have shown that urea-extracted cell wall of entomopathogenic Bacillus sphaericus 2297 and some other strains is a potent larvicide against Culex pipiens mosquitoes, with 50% lethal concentrations comparable to that of the well-known B. sphaericus binary toxin, with which it acts synergistically. The wall toxicity develops in B. sphaericus 2297 cultures during the late logarithmic stage, earlier than the appearance of the binary toxin crystal. It disappears with sporulation when the binary toxin activity reaches its peak. Disruption of the gene for the 42-kDa protein (P42) of the binary toxin abolishes both cell wall toxicity and crystal formation. However, the cell wall of B. sphaericus 2297, lacking P42, kills C. pipiens larvae when mixed with Escherichia coli cells expressing P42. Thus, the cell wall toxicity in strongly toxic B. sphaericus strains must be attributed to the presence in the cell wall of tightly bound 51-kDa (P51) and P42 binary toxin proteins. The synergism between binary toxin crystals and urea-treated cell wall preparations reflects suboptimal distribution of binary toxin subunits in both compartments. Binary toxin crystal is slightly deficient in P51, while cell wall is lacking in P42.  相似文献   

4.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC50] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC50 = 7.9 ng/ml) or B. sphaericus 2362 (LC50 = 12.6 ng/ml).  相似文献   

5.
The 2297 strain of Bacillus sphaericus produces a crystal of the Bin (binary) toxin that is approximately fourfold larger than that of strain 2362, the strain currently used in VectoLex, a commercial mosquito larvicide. Comparison of the regions downstream from the bin operon in these two strains showed that strain 2362 contained a 1.6-kb region with four orf genes not found in strain 2297. Insertion of a 1.1-kb portion of this region from strain 2362 by homologous recombination downstream from the bin operon in strain 2297 reduced Bin toxin production by 50 to 70% and toxicity to fourth-instar larvae of Culex quinquefasciatus by 68%. These results suggest that the 1.6-kb region downstream from the bin operon in B. sphaericus 2362 is responsible for the lower Bin yield and smaller crystal size characteristic of this strain.  相似文献   

6.
The interaction of two cytolytic toxins, Cyt1Ab from Bacillus thuringiensis subsp. medellin and Cyt2Ba from Bacillus thuringiensis subsp. israelensis, with Bacillus sphaericus was evaluated against susceptible and resistant Culex quinquefasciatus and the nonsensitive species Aedes aegypti. Mixtures of B. sphaericus with either cytolytic toxin were synergistic, and B. sphaericus resistance in C. quinquefasciatus was suppressed from >17,000- to 2-fold with a 3:1 mixture of B. sphaericus and Cyt1Ab. This trait may prove useful for combating insecticide resistance and for improving the activity of microbial insecticides.  相似文献   

7.
Li T  Sun F  Yuan Z  Zhang Y  Yu J  Pang Y 《Current microbiology》2000,40(5):322-326
The cyt1Aa gene of Bacillus thuringiensis subsp. israelensis and binary toxin gene of Bacillus sphaericus C3-41 were introduced into an acrystalliferous strain of B. thuringiensis independently and in combination by using shuttle vector pBU4. SDS-PAGE and Western blot analysis proved that cyt1Aa and binary toxin genes coexpressed during the sporulation of the recombinant. Transformant strain expressing the Cyt1Aa and binary toxin proteins in combination was more toxic to susceptible and resistant Culex pipiens quinquefasciatus than the transformants expressing Cyt1Aa protein or binary toxin proteins independently. It was suggested that large amount of production of Cyt1Aa protein and binary toxin proteins possibly interacted synergistically, thereby increasing its mosquitocidal toxicity significantly. Received: 22 October 1999 / Accepted: 22 November 1999  相似文献   

8.
Strains of Bacillus sphaericus exhibit varying levels of virulence against mosquito larvae. The most potent strain, B. sphaericus 2362, which is the active ingredient in the commercial product VectoLex®, together with another well-known larvicide Bacillus thuringiensis subsp. israelensis, is used to control vector and nuisance mosquito larvae in many regions of the world. Although not all strains of B. sphaericus are mosquitocidal, lethal strains produce one or two combinations of three different types of toxins. These are (1) the binary toxin (Bin) composed of two proteins of 42 kDa (BinA) and 51 kDa (BinB), which are synthesized during sporulation and co-crystallize, (2) the soluble mosquitocidal toxins (Mtx1, Mtx2 and Mtx3) produced during vegetative growth, and (3) the two-component crystal toxin (Cry48Aa1/Cry49Aa1). Non-mosquitocidal toxins are also produced by certain strains of B. sphaericus, for example sphaericolysin, a novel insecticidal protein toxic to cockroaches. Larvicides based on B. sphaericus-based have the advantage of longer persistence in treated habitats compared to B. thuringiensis subsp. israelensis. However, resistance is a much greater threat, and has already emerged at significant levels in field populations in China and Thailand treated with B. sphaericus. This likely occurred because toxicity depends principally on Bin rather than various combinations of crystal (Cry) and cytolytic (Cyt) toxins present in B. thuringiensis subsp. israelensis. Here we review both the general characteristics of B. sphaericus, particularly as they relate to larvicidal isolates, and strategies or considerations for engineering more potent strains of this bacterium that contain built-in mechanisms that delay or overcome resistance to Bin in natural mosquito populations.  相似文献   

9.
We studied the cross-resistance to three highly toxic Bacillus sphaericus strains, IAB-59 (serotype H6), IAB-881 (serotype H3), and IAB-872 (serotype H48), of four colonies of the Culex pipiens complex resistant to B. sphaericus 2362 and 1593, both of which are serotype H5a5b strains. Two field-selected highly resistant colonies originating from India (KOCHI, 17,000-fold resistance) and France (SPHAE, 23,000-fold resistance) and a highly resistant laboratory-selected colony from California (GeoR, 36,000-fold resistance) showed strong cross-resistance to strains IAB-881 and IAB-872 but significantly weaker cross-resistance to IAB-59 (3- to 43-fold resistance). In contrast, a laboratory-selected California colony with low-level resistance (JRMM-R, 5-fold resistance) displayed similar levels of resistance (5- to 10-fold) to all of the B. sphaericus strains tested. Thus, among the mosquitocidal strains of B. sphaericus we identified a strain, IAB-59, which was toxic to several Culex colonies that were highly resistant to commercial strains 2362 and 1593. Our analysis also indicated that strain IAB-59 may possess other larvicidal factors. These results could have important implications for the development of resistance management strategies for area-wide mosquito control programs based on the use of B. sphaericus preparations.  相似文献   

10.
The cry4Ba gene from Bacillus thuringiensis subsp. israelensis and the binary toxin gene from B. sphaericus C3-41 were cloned together into a shuttle vector and expressed in an acrystalliferous strain of B. thuringiensis subsp. israelensis 4Q7. Transformed strain Bt-BW611, expressing both Cry4Ba protein and binary toxin protein, was more than 40-fold more toxic to Culex pipiens larvae resistant to B. sphaericus than the transformed strains expressing Cry4Ba protein or binary toxin protein independently. This result showed that the coexpression of cry4Ba of B. thuringiensis subsp. israelensis with B. sphaericus binary toxin gene partly suppressed more than 10,000-fold resistance of C. pipiens larvae to the binary toxin. It was suggested that production of Cry4Ba protein and binary toxin protein interacted synergistically, thereby increasing their mosquito-larvicidal toxicity.  相似文献   

11.
An in vitro assay system for the toxin of Bacillus sphaericus strains 1593 and 2362 has been developed utilizing cultured Culex quinquefasciatus cells. The cytotoxic activity of extracts of B. sphaericus strain 1593 did not necessarily correlate with insecticidal activity. Cytotoxicity and larvicidal activity were neutralized by immune rabbit serum prepared against crude toxin extracts as well as by serum prepared against purified toxin from strain 2362. This purified toxin was also found to be cytotoxic. Activation with mosquito larval gut homogenates enhanced cytotoxicity of both 1593 extracts and purified toxin from 2362. The activity of cytotoxic preparations against three mosquito cell lines paralleled the activity of B. sphaericus spores against larvae of these mosquito species. The results suggest the presence of a protoxin and one or more cytotoxic proteins derived from it.  相似文献   

12.
Summary Seven bacterial isolates from Ghana, IAB 763, IAB 769-1, IAB 769-2, IAB 774, IAB 871, IAB 872, IAB 881, are characterized as Bacillus sphaericus strains highly toxic to mosquito larvae. Most of them belong to serotype H6, except for IAB 881 and IAB 872, which belong pesrespectively to serotypes H3 and H48. Phenotypic characters of all these strains are identical to those of strains 2362 (serotype H5) and IAB 59 (serotype H6), used for comparison. Five strains out of seven produce final whole cultures and alkali-solubilized toxins, which have very high potency against Culex pipiens larvae. Their larvicidal power is similar to that of strains 2362 and IAB 59. By using polyclonal antibodies raised against 42- and 56-kDa toxic polypeptides of strain 2362, Western-blot of the alkali-solubilized toxins of these new five strains showed homologies. It is the first time that strains belonging to serotypes H3 and H48 have been found pathogenic to mosquito larvae, thus increasing to eight the number of toxic serotypes of B. sphaericus. Correspondence to: I. Thiery  相似文献   

13.
Two field-collected Culex quinquefasciatus colonies were subjected to selection pressure by three strains of Bacillus sphaericus, C3-41, 2362, and IAB59, under laboratory conditions. After 13 and 18 generations of exposure to high concentrations of C3-41 and IAB59, a field-collected low-level-resistant colony developed >144,000- and 46.3-fold resistance to strains C3-41 and IAB59, respectively. A field-collected susceptible colony was selected with 2362 and IAB59 for 46 and 12 generations and attained >162,000- and 5.7-fold resistance to the two agents, respectively. The pattern of resistance evolution in mosquitoes depended on continuous selection pressure, and the stronger the selection pressure, the more quickly resistance developed. The resistant colonies obtained after selection with B. sphaericus C3-41 and 2362 showed very high levels of cross-resistance to B. sphaericus 2362 and C3-41, respectively, but they displayed only low-level cross-resistance to IAB59. On the other hand, the IAB59-selected colonies had high cross-resistance to both strains C3-41 and 2362. Additionally, the slower evolution of resistance against strain IAB59 may be explained by the presence of another larvicidal factor. This is in agreement with the nontoxicity of the cloned and purified binary toxin (Bin1) of IAB59 for 2362-resistant larvae. We also verified that all the B. sphaericus-selected colonies showed no cross-resistance to Bacillus thuringiensis subsp. israelensis, suggesting that it would be a promising alternative in managing resistance to B. sphaericus in C. quinquefasciatus larvae.  相似文献   

14.
We cloned and sequenced a new cytolysin gene from Bacillus thuringiensis subsp. medellin. Three IS240-like insertion sequence elements and the previously cloned cyt1Ab and p21 genes were found in the vicinity of the cytolysin gene. The cytolysin gene encodes a protein 29.7 kDa in size that is 91.5% identical to Cyt2Ba from Bacillus thuringiensis subsp. israelensis and has been designated Cyt2Bc. Inclusions containing Cyt2Bc were purified from the crystal-negative strain SPL407 of B. thuringiensis. Cyt2Bc reacted weakly with antibodies directed against Cyt2Ba and was not recognized by an antiserum directed against the reference cytolysin Cyt1Aa. Cyt2Bc was hemolytic only upon activation with trypsin and had only one-third to one-fifth of the activity of Cyt2Ba, depending on the activation time. Cyt2Bc was also mosquitocidal against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, including strains resistant to the Bacillus sphaericus binary toxin. Its toxicity was half of that of Cyt2Ba on all mosquito species except resistant C. quinquefasciatus.  相似文献   

15.
Summary A new medium (MBS) for optimal sporulation of Bacillus sphaericus was defined. With the two main mosquito pathogenic strains grown in this medium, 1593-4 and 2297, highest cell and spore yields were obtained, concomitantly with an highest larvicidal activity against Culex pipiens. Study of both strains asporulated mutants showed a decrease in larvicidal power. After plasmid curing treatments, toxicity of strain 1593-4 did not decrease, neither toxic parasporal inclusion bodies of strain 2297 disappear.  相似文献   

16.
Bacillus sphaericus (Bs) binary toxin was purified from recombinant E. coli DH5α harboring the recombinant plasmid pAR5, which carries a 3.6-kb DNA fragment of Bs 1593M encoding mosquito larvicidal activity. The binary toxin preparation, designated BsEcAg, contained mainly 51- and 42-kDa toxin proteins and was toxic to 50% of Culex quinquefasciatus larvae at a concentration of 9.22 ng toxin protein/ml. This preparation was used to raise antibodies in sheep and mice. The sandwich ELISA used sheep antitoxin antibody as primary antibody (coating antibody), mouse antitoxin antibody as second antibody, and goat antimouse antibody as an alkaline phosphatase-conjugated detecting antibody. The assay sensitivity was 200 ng/ml for both BsEcAg and binary toxin antigen (BsAg) from Bs 2362 cells. There is a significant correlation between toxin level determined by ELISA and bioassay. This procedure has also been used to monitor toxin levels in batch fermentations of Bs 2362. Received: 2 July 1997 / Accepted: 12 August 1997  相似文献   

17.
Bacillus sphaericus is a mosquitocidal bacterium recently developed as a commercial larvicide that is used worldwide to control pestiferous and vector mosquitoes. Whereas B. sphaericus is highly active against larvae of Culex and Anopheles mosquitoes, it is virtually nontoxic to Aedes aegypti, an important vector species. In the present study, we evaluated the capacity of the cytolytic protein Cyt1A from Bacillus thuringiensis subsp. israelensis to enhance the toxicity of B. sphaericus toward A. aegypti. Various combinations of these two materials were evaluated, and all were highly toxic. A ratio of 10:1 of B. sphaericus to Cyt1A was 3,600-fold more toxic to A. aegypti than B. sphaericus alone. Statistical analysis showed this high activity was due to synergism between the Cyt1A toxin and B. sphaericus. These results suggest that Cyt1A could be useful in expanding the host range of B. sphaericus.  相似文献   

18.
Two insecticidal bacteria are used as larvicides to control larvae of nuisance and vector mosquitoes in many countries, Bacillus thuringiensis ssp. israelensis and B. sphaericus. Field studies show both are effective, but serious resistance, as high as 50 000‐fold, has evolved where B. sphaericus is used against Culex mosquitoes. To improve efficacy and deal with even greater potential problems of resistance, we previously developed several recombinant larvicidal bacteria that combine the best mosquitocidal proteins of these bacteria. In the present study, we report laboratory selection studies using our best recombinant strain against larvae of Culex quinquefasciatus. This recombinant, Bti/BsBin, is a strain of B. thuringiensis ssp. israelensis engineered to produce a large amount of the B. sphaericus binary (Bin) toxin, which makes it more than 10‐fold as mosquitocidal as the its parental strains. Here we show that larvae exposed to Bti/BsBin failed to develop significant resistance after 30 successive generations of heavy selection pressure. The highest level of resistance obtained at the LC95 level was 5.2‐fold, but declined to less than two‐fold at the 35th generation. Testing the selected populations against B. sphaericus alone showed resistance to Bin evolved, but was masked by combination with B. thuringiensis ssp. israelensis. These results suggest that recombinant bacterial strains have improved mosquito and vector management properties compared with the wild‐type strains used in current commercial formulations, and should prove useful in controlling important human diseases such as malaria and filariasis on a long‐term basis, even when used intensively under field conditions.  相似文献   

19.
Mtx1 and Mtx2 are mosquitocidal toxins produced by some strains of Bacillus sphaericus during vegetative phase of growth. Mtx1 from B. sphaericus 2297 shows higher toxicity against Culex quinquefasciatus larvae than to Aedes aegypti larvae whereas Mtx2 from B. sphaericus 2297 shows lower toxicity against C. quinquefasciatus than to A. aegypti larvae. To test synergism of these toxins against A. aegypti larvae, mtx1 and mtx2 genes were cloned into a single plasmid and expressed in Escherichia coli. Cells producing both Mtx1 and Mtx2 toxins exhibited high synergistic activity against A. aegypti larvae approximately 10 times compared to cells expressing only a single toxin. Co-expression of both toxins offers an alternative to improve efficacy of recombinant bacterial insecticides. There is a high possibility to develop these toxins to be used as an environmentally friendly mosquito control agent.  相似文献   

20.
Insecticides based on Bacillus thuringiensis subsp. israelensis have been used for mosquito and blackfly control for more than 20 years, yet no resistance to this bacterium has been reported. Moreover, in contrast to B. thuringiensis subspecies toxic to coleopteran or lepidopteran larvae, only low levels of resistance to B. thuringiensis subsp. israelensis have been obtained in laboratory experiments where mosquito larvae were placed under heavy selection pressure for more than 30 generations. Selection of Culex quinquefasciatus with mutants of B. thuringiensis subsp. israelensis that contained different combinations of its Cry proteins and Cyt1Aa suggested that the latter protein delayed resistance. This hypothesis, however, has not been tested experimentally. Here we report experiments in which separate C. quinquefasciatus populations were selected for 20 generations to recombinant strains of B. thuringiensis that produced either Cyt1Aa, Cry11Aa, or a 1:3 mixture of these strains. At the end of selection, the resistance ratio was 1,237 in the Cry11Aa-selected population and 242 in the Cyt1Aa-selected population. The resistance ratio, however, was only 8 in the population selected with the 1:3 ratio of Cyt1Aa and Cry11Aa strains. When the resistant mosquito strain developed by selection to the Cyt1Aa-Cry11Aa combination was assayed against Cry11Aa after 48 generations, resistance to this protein was 9.3-fold. This indicates that in the presence of Cyt1Aa, resistance to Cry11Aa evolved, but at a much lower rate than when Cyt1Aa was absent. These results indicate that Cyt1Aa is the principal factor responsible for delaying the evolution and expression of resistance to mosquitocidal Cry proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号