首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isolated cells from Xenopus laevis neurulae were labeled, and the RNAs extracted from their nuclear and soluble cytoplasmic fractions were analyzed on polyacrylamide gels. In the soluble cytoplasm, 4S RNA emerged very rapidly, and this was immediately followed by the emergence of poly(A)-containing RNA and 18S ribosomal RNA. In contrast, the emergence of 28S ribosomal RNA was delayed by about 2 hr. The size distribution of cytoplasmic poly(A)-containing RNA was much smaller as compared to that of nuclear poly(A)-containing RNA. These results indicate that the newly synthesized RNAs in Xenopus neurula cells are transported from the nucleus to the cytoplasm in a characteristic sequence.  相似文献   

2.
3.
4.
Poly(A)-containing messenger RNA was isolated from polysomes of Ehrlich ascites tumor cells, and analyzed for sequence complexity by hybridization to its complementary DNA. The results indicate the presence of about 27,000 diverse mRNA species in mouse Ehrlich ascites tumor cells. Total nuclear RNA was also hybridized to cDNA transcribed from polysomal poly(A)-containing mRNA up to an rot of 3,000 M . s. It was found that all classes of the polysomal poly(A)-containing mRNA sequences were also present in the nucleus, although the distribution varied. About 2% of the total nuclear RNA sequences were expressed as total polysomal poly(A)-containing mRNA. We also report that the total percentage of the haploid mouse genome transcribed in Ehrlich cells is significantly higher than that found in other mouse cells previously examined for poly(A)-containing mRNA sequence complexity.  相似文献   

5.
Mapping the spliced and unspliced late lytic SV40 RNAs.   总被引:63,自引:0,他引:63  
C J Lai  R Dhar  G Khoury 《Cell》1978,14(4):971-982
  相似文献   

6.
From livers of estrogen-stimulated female Xenopus toads, large quantities of estrogen-induced, poly(A)-containing RNA could be isolated, showing the same characteristics as vitellogenin mRNA obtained from hormone-treated males.Using cDNA hybridization, vitellogenin mRNA was monitored in the cytoplasmic poly(A)-containing RNA of the liver of male toads during 13 days of primary and the initial phase of secondary stimulation with estrogen.During primary stimulation, low amounts of vitellogenin mRNA, not exceeding 0.18% of the cytoplasmic poly(A)-containing RNA, were first detected after 12 hr of hormone treatment, and vitellogenin mRNA was found to increase on the average to 34% of the cytoplasmic poly(A)-containing RNA on the seventh day of hormone treatment. After 3 days of primary stimulation, accumulation of vitellogenin mRNA leveled off, showing no significant increase in the cytoplasm up to 13 days of hormone treatment. As judged from incorporation of 32PO4 into blood plasma proteins of males during primary stimulation, vitellogenin was first detected after 1 day, and its synthesis was found to increase dramatically until the thirteenth day of hormone treatment. This implies that there is a coincidence between appearance and extent of synthesis of vitellogenin and the abundance of vitellogenin mRNA in the cytoplasm, but there is evidence that during later phase of primary stimulation (day 3–13), the increase in synthesis of vitellogenin cannot be attributed anymore to a significant accumulation of vitellogenin mRNA.In male Xenopus, estrogen-induced synthesis of vitellogenin is no more detectable 41 days after hormone injection, and the concentration of vitellogenin mRNA was found to be <0.03% of the cytoplasmic poly(A)-containing RNA. Secondary stimulation by estrogen of these animals results in an at least 30 fold faster accumulation of vitellogenin mRNA in the cytoplasm within the initial 12 hr of hormone treatment. This may explain the faster appearance of vitellogenin in the blood plasma.  相似文献   

7.
The effect of herpes simplex virus (HSV) infection of mRNA metabolism was examined in a system where the fate of specific RNA sequence can be assayed. Adenovirus type 5-transformed rat embryo cell line 107 synthesizes adenovirus-specific RNA (ad-RNA), which functions in the cytoplasm as mRNA. We have utilized ad-RNA as a model for mRNA metabolism, and in a preliminiary study we characterized ad-RNA in the nucleus and cytoplasm by hybridization to filter-bound adenovirus DNA. The results indicated the as-RNA accumulates in the nucleus and that cytoplasmic polyadenylic acid [poly(A)]-containing ad-RNA turns over with a half-life of a few hours. Pulse-chase experiments confirmed these observations and a half-life of about h was determined for the poly(A)-containing cytoplasmic ad-RNA. A second class of ad-RNA remains in the nucleus, where it turns over with a longer hlaf-life (about 24 h). The infection of 107 cells by HSV was restricted at 37 degree C, giving a burst size of 5 PFU per cell and allowing continued host DNA synthesis. Protein synthesis was inhibited greater than 50% by 7 h after infection, and total RNA synthesis was 50% inhibited by 4 h after infection. During the first 8 h after infection, HSV has little effect on the rate of synthesis of ad-RNA as determined by hybridization of nuclear RNA samples, but,during the same period, HSV inhibits the accumulation of poly(A)-containing ad-RNA in the cytoplasm. The degree of this inhibition increases steadily throughout this period and reaches 60% by 6.5 to 8 h after infection. Nosignificant effect was seen on the accumulation of total cellular poly(A)-containing RNA. It was concluded from these experiments that HSV infection alters the metabolism of ad-RNA so as to prevent the normal appearance of the poly(A)-containing mRNA in the cytoplasm. The result for ad-RNA may not represent the behavior of total cellular poly(A)-containing RNA under conditions where infection is restricted.  相似文献   

8.
Polysomal and nuclear poly(A)-containing RNA of normal rat liver and Novikoff hepatoma cells have been compared by cDNA.RNA hybridization kinetics. Homologous hybridization reactions revealed at total kinetic complexity of about 1.6 X 10(10) and 1.38 X 10(10) daltons for liver and Novikoff mRNA respectively. The high abundance component present in liver cannot be detected in Novikoff. It was found from heterologous reactions that about 30% by weight of mRNA sequences are specific to liver. Determination of the nuclear poly(A)-containing RNA complexities revealed that about 5.5% and 4% of the haploid genome is expressed in the liver and Novikoff respectively. In a heterologous reaction, up to 30% of the liver cDNA failed to form hybrids with Novikoff nuclear RNA. Cross hybridizations have further revealed abundance shifts in both nuclear and polysomal RNA populations. Some sequences abundant in liver are less abundant in Novikoff and some rare liver sequences are relatively abundant in Novikoff.  相似文献   

9.
The size range of poly(A)-containing RNA from Drosophila melanogaster embryos has been estimated by hybridization with 3H-labeled poly(U) and subsequent fractionation on sucrose gradients. The median size of nuclear poly(A)-containing RNA is about 30 S (6000 nucleotides), and the median size of cytoplasmic poly(A)-containing RNA is about 17 S (1800 nucleotides). The relationship of these sizes to messenger RNA needed to code for protein and to the length of DNA contained in a chromomere is discussed.Research grant support was provided by NIH (6M35558; HD-00266) and NSF (GB-30600).  相似文献   

10.
11.
Poly(A)-containing RNA was isolated by cellulose column chromatography from total RNA extracted from Chlorella fusca var. vacuolata 211/8p. RNA retained by the column was identified as poly(A)-containing RNA because it contained ribonuclease-resistant tracts, 25 to 55 nucleotides in length, from which not less than 80% of base was found to be adenine after acid hydrolysis. The base composition of poly(A)-containing RNA differed from that of RNA (largely ribosomal) which did not adsorb to cellulose, having a higher adenine content and a lower guanine content. Poly(A)-containing RNA was polydisperse including molecules with mobilities from 10S to 40S with a mean of about 20S. In an in vitro system derived from wheat-germ, protein synthesis was stimulated by adding poly(A)-containing RNA from Chlorella. Optimum conditions were established in this system with respect to the amount of poly(A)-containing RNA added and the concentration of KCl and Mg-2+. It is proposed that, in Chlorella, poly(A)-containing RNA includes cytoplasmic mRNA as has been shown for some other eucaryotic organisms.  相似文献   

12.
Steady state concentrations of individual RNA sequences in poly(A) nuclear and cytoplasmic RNA populations of Drosophila Kc cells were determined using cloned cDNA fragments. These cDNAs represent poly(A) RNA sequences of different abundance in the cytoplasm of Kc cells, but their steady state concentrations in poly(A) hnRNA was always lower. Of ten different sequences analysed, eight showed some four-fold lower concentration in hnRNA mRNA, two were underrepresented in hnRNA relative to the others. The obvious clustering of mRNA/hnRNA ratios is discussed in relation to sequence complexity and turnover rates of these RNA populations.  相似文献   

13.
14.
DNA complementary to polysomal poly(A)-containing mRNA (cDNA) of male rat liver was used to study the diversity of messenger sequences in the nucleus and in polysomes. 1. Hybridization of cDNA against an excess of its own polysomal mRNA template revealed that about 10,000 different mRNA species are expressed in the liver tissue. They are distributed in a wide frequency range derived from approximately 0.5% of the total genome. 2. Hybridization of the cDNA against total nuclear RNA shows that messenger sequences comprise less than 1% of the mass of total nuclear RNA. Messenger sequences have a different frequency distribution in nucleus and cytoplasm. 3. In hybridizations using cDNA, which had been fractionated into sequences representing abundant and scarce polysomal mRNA molecules, it was found that although abundant cytoplasmic messenger sequences are also abundant in the nucleus, they exist in a significantly lower frequency range in the nuclear compartment.  相似文献   

15.
16.
Previous work (Firtel et al., 1972) showed that messenger RNA from the cellular slime mold Dictyostelium discoideum, like that from mammalian cells, contains a sequence of about 100 adenylic acid residues at the 3′ end. We show here that Dictyostelium nuclei, labeled under a variety of conditions, do not contain material analogous to the large nuclear heterogeneous RNA found in mammalian cells. Rather, the majority of pulse-labeled nuclear RNA that is not a precursor of ribosomal RNA does contain at least one sequence of polyadenylic acid; this RNA, with an average molecular weight of 500,000, appears to be only 20% larger than cytoplasmic messenger RNA.Pulse-labeling experiments show that the nuclear poly(A)-containing RNA is a material precursor of messenger RNA. Whereas previous work showed that over 90% of messenger RNA sequences are transcribed from non-reiterated DNA, we show here that about 25% of nuclear poly (A)-containing RNA is transcribed from reiterated DNA sequences and only 75% from single-copy DNA. We present evidence that a large fraction of the nuclear poly(A)-containing RNA contains, at the 5′ end, a sequence of about 300 nucleotides that is transcribed from repetitive DNA, and which is lost before transport of messenger RNA into the cytoplasm.Based on these and other results, we present a model of arrangement of repetitive and single-copy DNA sequences in the Dictyostelium chromosome.  相似文献   

17.
The mRNA species which exist in the HeLa cell polyribisomes in a form devoid of A sequences longer than 8 nucleotides constitute the poly(A)-free class of mRNA. The rapidly labelled component of this mRNA class shares no measurable sequence homology with poly(A)-containing RNA. If poly(A)-free mRNA larger than 12 S labelled for 2 h in vivo is hybridized with total cellular DNA, it hybridizes primarily with single-copy DNA. When a large excess of steady poly(A)-containing RNA is added before hybridization of labelled poly(A)-free RNA, no inhibition of hybridization occurs. This indicates the existence of a class of poly(A)-free mRNA with no poly(A)-containing counterpart. Some mRNA species can exist solely as poly(A)-containing mRNAs. These mRNAs in HeLa cells are found almost exclusively in the mRNA species present only a few times per cell (scarce sequences). Some mRNA species can exist in two forms, poly(A)containing and lacking, as evidenced by the translation data in vitro of Kaufmann et al. [Proc. Natl Acad. Sci. U.S.A. 74, 4801--4805 (1977)]. In addition, if cDNA to total poly(A)-containing mRNA is fractionated into abundant and scarce classes, 47% of the scarce class cDNA can be readily hybridized with poly(A)-free mRNA. 10% of the abundant cDNA to poly(A)-containing mRNA will hybridize with poly(A)-free sequences very rapidly while the other 90% hybridize 160 times more slowly, indicating two very different frequency distributions. The cytoplasmic metabolism of these three distinct mRNA classes is discussed.  相似文献   

18.
With the aid of a suitable thin layer chromatographic procedure, the N-6 methyl adenylic acid (m6A), content of a variety of 32P labeled RNA species from HeLa cells has been measured. Poly(A)-containing (poly(A)+) cytoplasmic RNA has on the average one m6Ap per 800 to 900 nucleotides. This value is independent of the length of the molecules. The proportion of m6Ap in poly(A)+ cytoplasmic RNA does not change between 4 and 18 hours of labeling with 32P, suggesting that the majority of the messenger RNA molecules may have a similar level of internal methylation regardless of their half-life. The non-polyadenylated, non-ribosomal cytoplasmic RNA fraction sedimenting from 10S TO 28S is less methylated with approximately one m6A per 2,700 nucleotides. Heterogeneous nuclear RNA molecules (DMSO treated) which sediment from 28S to 45S have approximately one m6Ap per 3,000 nucleotides. The hnRNA molecules sedimenting from 10S to 28S have one m6Ap per 1,800 nucleotides. Poly(A)+ nuclear RNA is enriched in m6A, containing 1 residue of m6A per 700 to 800 nucleotides, a value close to that obtained for the polyadenylated cytoplasmic RNA.  相似文献   

19.
A single administration of 2-allyl-2-isopropylacetamide, a porphyrinogenic drug, enhanced the 32P-labelling of nucleoplasmic as well as cytoplasmic poly(A)-containing RNA in rat liver. The synthesis of total microsomal RNA is only marginally increased under these conditions. The drug enhances the labelling of a variety of cytoplasmic poly(A)-containing RNA species, and this effect is counteracted by the simultaneous administration of haemin. 2-Allyl-2-isopropylacetamide also enhanced the release of RNA from the nucleus to the cytoplasm.  相似文献   

20.
A number of parameters affecting the adsorption of rRNA and poly(A)-containing RNA to Millipore filters were investigated separately. Binding of both types of RNA to the filter was dependent on the concentration of RNA, pH and Mg2+ concentration of the reaction mixture. Both types of RNA bound to the filter optimally at slightly acid pH values. The binding of poly(A)-containing RNA to the filter exhibited a broad pH-dependence compared with that of rRNA. The ratio of poly(A)-rich RNA/rRNA retained by the filter was maximal between pH7 and 8. The presence of 1 mM-EDTA or a high concentration of NaCl (over 0.5M) decreased the affinity of RNA for the filter. The amount of poly(A)-containing RNA in the nucleus and in the cytoplasm of a plasmacytoma cell line (MPC-11) labelled with [32P]Pi was determined by the Millipore-filter technique under conditions that minimized contamination by rRNA. These data were compared with the estimations made by oligo(dT)-cellulose chromatography. The results obtained by these two methods were in good agreement for RNA labelled for short periods (up to 2h). In long labelling and pulse-chase experiments, however, contamination of the filter by rRNA of increasing specific radioactivity in the cytoplasm gave an erroneous value for poly(A)-containing RNA by the Millipore-filter technique. Determinations made on the nuclear fraction by these two methods did not show significant variation in short- and long-term labelling experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号