首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tRNALys anticodon nuclease PrrC is associated in latent form with the type Ic DNA restriction endonuclease EcoprrI and activated by a phage T4-encoded inhibitor of EcoprrI. The activation also requires the hydrolysis of GTP and presence of dTTP and is inhibited by ATP. The N-proximal NTPase domain of PrrC has been implicated in relaying the activating signal to a C-proximal anticodon nuclease site by interacting with the requisite nucleotide cofactors [Amitsur et al. (2003) Mol. Microbiol., 50, 129–143]. Means described here to bypass PrrC's self-limiting translation and thermal instability allowed purifying an active mutant form of the protein, demonstrating its oligomeric structure and confirming its anticipated interactions with the nucleotide cofactors of the activation reaction. Mutagenesis and chemical rescue data shown implicate the C-proximal Arg320, Glu324 and, possibly, His356 in anticodon nuclease catalysis. This triad exists in all the known PrrC homologs but only some of them feature residues needed for tRNALys recognition by the Escherichia coli prototype. The differential conservation and consistent genetic linkage of the PrrC proteins with EcoprrI homologs portray them as a family of restriction RNases of diverse substrate specificities that are mobilized when an associated DNA restriction nuclease is compromised.  相似文献   

2.
Phage T4-induced anticodon nuclease triggers cleavage-ligation of the host tRNA(Lys). The enzyme is encoded in latent form by the optional Escherichia coli locus prr and is activated by the product of the phage stp gene. Anticodon nuclease latency is attributed to the masking of the core function prrC by flanking elements homologous with type I restriction-modification genes (prrA-hsdM and prrD-hsdR). Activation of anticodon nuclease in extracts of uninfected prr+ cells required synthetic Stp, ATP and GTP and appeared to depend on endogenous DNA. Stp could be substituted by a small, heat-stable E. coli factor, hinting that anticodon nuclease may be mobilized in cellular situations other than T4 infection. Hsd antibodies recognized the anticodon nuclease holoenzyme but not the prrC-encoded core. Taken together, these data indicate that Hsd proteins partake in the latent ACNase complex where they mask the core factor PrrC. Presumably, this masking interaction is disrupted by Stp in conjunction with Hsd ligands. The Hsd-PrrC interaction may signify coupling and mutual enhancement of two prokaryotic restriction systems operating at the DNA and tRNA levels.  相似文献   

3.
The tRNALys-specific anticodon nuclease exists in latent form in Escherichia coli strains containing the optional prr locus. The latency is a result of a masking interaction between the anticodon nuclease core-polypeptide PrrC and the Type IC DNA restriction-modification enzyme EcoprrI. Activation of the latent enzyme by phage T4-infection elicits cleavage of tRNALys 5' to the wobble base, yielding 5'-OH and 2', 3'-cyclic phosphate termini. The N-proximal half of PrrC has been implicated with (A/G) TPase and EcoprrI interfacing activities. Therefore, residues involved in recognition and cleavage of tRNALys were searched for at the C-half. Random mutagenesis of the low-G+C portion encoding PrrC residues 200-313 was performed, followed by selection for loss of anticodon nuclease-dependent lethality and production of full-sized PrrC-like protein. This process yielded a cluster of missense mutations mapping to a region highly conserved between PrrC and two putative Neisseria meningitidis MC58 homologues. This cluster included two adjacent members that relaxed the inherent enzyme's cleavage specificity. We also describe another mode of relaxed specificity, due to mere overexpression of PrrC. This mode was shared by wild-type PrrC and the other mutant alleles. The additional substrates recognised under the promiscuous conditions had, in general, anticodons resembling that of tRNALys. Taken together, the data suggest that the anticodon of tRNALys harbours anticodon nuclease identity elements and implicates a conserved region in PrrC in their recognition.  相似文献   

4.
M Amitsur  I Morad    G Kaufmann 《The EMBO journal》1989,8(8):2411-2415
During phage T4 infection of Escherichia coli strains containing the prr locus the host tRNALys undergoes cleavage-ligation in reactions catalyzed by anticodon nuclease, polynucleotide kinase and RNA ligase. Known genetic determinants of anticodon nuclease are prr, which restricts T4 mutants lacking polynucleotide kinase or RNA ligase, and stp, the T4 suppressor of prr encoded restriction. The present communication describes an in vitro anticodon nuclease assay in which the specific cleavage of tRNALys is driven by an extract from E. coli prrr (restrictive) cells infected by phage T4. The in vitro anticodon nuclease reaction requires factor(s) encoded by prr, is stimulated by a synthetic Stp polypeptide and appears to require additional T4 induced factor(s) distinct from Stp.  相似文献   

5.
A tRNALys-specific anticodon nuclease is kept in a latent form in a rare Escherichia coli strain, complexed with a DNA restriction enzyme. A phage T4 inhibitor of DNA restriction activates anticodon nuclease, but other T4 proteins restore tRNALys. Detection of a homologous system in Neisseria and a different anticodon nuclease in colicin E5 suggest ubiquity and diversity of such tRNA toxins. Analysis of these systems could reveal novel RNA recognition and cleavage mechanisms.  相似文献   

6.
The natural role of the conserved bacterial anticodon nuclease (ACNase) RloC is not known, but traits that set it apart from the homologous phage T4‐excluding ACNase PrrC could provide relevant clues. PrrC is silenced by a genetically linked DNA restriction‐modification (RM) protein and turned on by a phage‐encoded DNA restriction inhibitor. In contrast, RloC is rarely linked to an RM protein, and its ACNase is regulated by an internal switch responsive to double‐stranded DNA breaks. Moreover, PrrC nicks the tRNA substrate, whereas RloC excises the wobble nucleotide. These distinctions suggested that (i) T4 and related phage that degrade their host DNA will activate RloC and (ii) the tRNA species consequently disrupted will not be restored by phage tRNA repair enzymes that counteract PrrC. Consistent with these predictions we show that Acinetobacter baylyi RloC expressed in Escherichia coli is activated by wild‐type phage T4 but not by a mutant impaired in host DNA degradation. Moreover, host and T4 tRNA species disrupted by the activated ACNase were not restored by T4's tRNA repair system. Nonetheless, T4's plating efficiency was inefficiently impaired by AbaRloC, presumably due to a decoy function of the phage encoded tRNA target, the absence of which exacerbated the restriction.  相似文献   

7.
The optional Escherichia coli prr locus restricts phage T4 mutants lacking polynucleotide kinase or RNA ligase. Underlying this restriction is the specific manifestation of the T4-induced anticodon nuclease, an enzyme which triggers the cleavage-ligation of the host tRNALys. We report here the molecular cloning, nucleotide sequence and mutational analysis of prr-associated DNA. The results indicate that prr encodes a latent form of anticodon nuclease consisting of a core enzyme and cognate masking agents. They suggest that the T4-encoded factors of anticodon nuclease counteract the prr-encoded masking agents, thus activating the latent enzyme. The encoding of a tRNA cleavage-ligation pathway by two separate genetic systems which cohabitate E. coli may provide a clue to the evolution of RNA splicing mechanisms mediated by proteins.  相似文献   

8.
Anticodon nuclease is a bacterial restriction enzyme directed against tRNA(Lys). We report that anticodon nuclease also cleaves mammalian tRNA(Lys) molecules, with preference and site specificity shown towards the natural substrate. Expression of the anticodon nuclease core polypeptide PrrC in HeLa cells from a recombinant vaccinia virus elicited cleavage of intracellular tRNA(Lys),3. The data justify an inquiry into the possible application of anticodon nuclease as an inhibitor of tRNA(Lys),3-primed HIV replication. They also indicate that the anticodon region of tRNA(Lys) is a substrate recognition site and suggest that PrrC harbors the enzymatic activity.  相似文献   

9.
The conserved bacterial protein RloC, a distant homologue of the tRNALys anticodon nuclease (ACNase) PrrC, is shown here to act as a wobble nucleotide-excising and Zn++-responsive tRNase. The more familiar PrrC is silenced by a genetically linked type I DNA restriction-modification (R-M) enzyme, activated by a phage anti-DNA restriction factor and counteracted by phage tRNA repair enzymes. RloC shares PrrC's ABC ATPase motifs and catalytic ACNase triad but features a distinct zinc-hook/coiled-coil insert that renders its ATPase domain similar to Rad50 and related DNA repair proteins. Geobacillus kaustophilus RloC expressed in Escherichia coli exhibited ACNase activity that differed from PrrC's in substrate preference and ability to excise the wobble nucleotide. The latter specificity could impede reversal by phage tRNA repair enzymes and account perhaps for RloC's more frequent occurrence. Mutagenesis and functional assays confirmed RloC's catalytic triad assignment and implicated its zinc hook in regulating the ACNase function. Unlike PrrC, RloC is rarely linked to a type I R-M system but other genomic attributes suggest their possible interaction in trans . As DNA damage alleviates type I DNA restriction, we further propose that these related perturbations prompt RloC to disable translation and thus ward off phage escaping DNA restriction during the recovery from DNA damage.  相似文献   

10.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease cleaves its natural substrate 5' to the wobble base, yielding 2',3'-cyclic phosphate termini. Previous work has implicated the anticodon of tRNA(Lys) as a specificity element and a cluster of amino acid residues at the carboxy-proximal half of PrrC in its recognition. We further examined these assumptions by assaying unmodified and hypomodified derivatives of tRNA(Lys) as substrates of wild-type and mutant alleles of PrrC. The data show, first, that the anticodon sequence and wobble base modifications of tRNA(Lys) play major roles in the interaction with anticodon nuclease. Secondly, a specific contact between the substrate recognition site of PrrC and the tRNA(Lys) wobble base is revealed by PrrC missense mutations that suppress the inhibitory effects of wobble base modification mutations. Thirdly, the data distinguish between the anticodon recognition mechanisms of PrrC and lysyl-tRNA synthetase.  相似文献   

11.
Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.  相似文献   

12.
L Woods  C E Catalano 《Biochemistry》1999,38(44):14624-14630
The terminase enzyme from bacteriophage lambda is responsible for the insertion of viral DNA into the confined space within the capsid. The enzyme is composed of the virally encoded proteins gpA (73.3 kDa) and gpNu1 (20.4 kDa) isolated as a gpA(1).gpNu1(2) holoenzyme complex. Lambda terminase possesses a site-specific nuclease activity, an ATP-dependent DNA strand-separation activity, and an ATPase activity that must work in concert to effect genome packaging. We have previously characterized the ATPase activity of the holoenzyme and have identified catalytic active sites in each enzyme subunit [Tomka and Catalano (1993) Biochemistry 32, 11992-11997; Hwang et al. (1996) Biochemistry 35, 2796-2803]. We have noted that GTP stimulates the ATPase activity of the enzyme, and terminase-mediated GTP hydrolysis has been observed. The studies presented here describe a kinetic analysis of the GTPase activity of lambda terminase. GTP hydrolysis by the enzyme requires divalent metal, is optimal at alkaline pH, and is strongly inhibited by salt. Interestingly, while GTP can bind to the enzyme in the absence of DNA, GTP hydrolysis is strictly dependent on the presence of polynucleotide. Unlike ATP hydrolysis that occurs at both subunits of the holoenzyme, a single catalytic site is observed in the steady-state kinetic analysis of GTPase activity (k(cat) approximately 37 min(-)(1); K(m) approximately 500 microM). Moreover, while GTP stimulates ATP hydrolysis (apparent K(D) approximately 135 microM for GTP binding), all of the adenosine nucleotides examined strongly inhibit the GTPase activity of the enzyme. The data presented here suggest that the two "NTPase" catalytic sites in terminase holoenzyme communicate, and we propose a model describing allosteric interactions between the two sites. The biological significance of this interaction with respect to the assembly and disassembly of the multiple nucleoprotein packaging complexes required for virus assembly is discussed.  相似文献   

13.
tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNALys(UUU) as a target of EcoPrrC toxicity in yeast.  相似文献   

14.
The DNA polymerase holoenzyme of bacteriophage T4 contains, besides the DNA polymerase itself (the gene 43 protein), a complex of the protein products of T4 genes 44 and 62 (a DNA-dependent ATPase) and of gene 45. Together, the 44/62 and 45 proteins form an ATP-dependent "sliding clamp" that holds a moving DNA polymerase molecule at the 3' terminus of a growing DNA chain. We have used a unique DNA fragment that forms a short hairpin helix with a single-stranded 5' tail (a "primer-template junction") to map the binding sites for these polymerase accessory proteins by DNA footprinting techniques. In the absence of the DNA polymerase, the accessory proteins protect from DNase I cleavage 19-20 nucleotides just behind the 3' end of the primer strand and 27-28 nucleotides on the complementary portion of the template strand. Detection of this DNA-protein complex requires the 44/62 and 45 proteins plus the nonhydrolyzable ATP analogue adenosine 5'-O-(thiotriphosphate). The complex is not detected in the presence of ATP. We suggest that ATP hydrolysis by the 44/62 protein normally activates the accessory proteins at a primer-template junction, permitting the DNA polymerase to bind and thus form the complete holoenzyme. However, when the polymerase is missing, as in these experiments, ATP hydrolysis is instead followed by a release (or loosening) of the accessory protein complex.  相似文献   

15.
The physical basis of ATP binding and activation of DNA polymerase III holoenzyme was studied by an ultraviolet irradiation cross-linking technique. ATP and dATP were photocrosslinked to the alpha, tau, gamma, and delta subunits of holoenzyme; photocrosslinking of dATP was competitively inhibited by ATP. No photocrosslinking was observed with GTP or CTP, nor did GTP, CTP, or UTP inhibit cross-linking of ATP. ADP and adenosine 5'-O-(3-thio)-triphosphate, both potent inhibitors of ATP activation of holoenzyme, inhibited cross-linking of ATP to tau, gamma, and delta subunits, but not to the alpha subunit, suggesting that one or more of these subunits are ATP (or dATP)-binding sites. Photocrosslinking of dTTP to the ATP-activated holoenzyme was exclusively to the epsilon subunit, the dnaQ ( mutD ) gene product; dCTP and dGTP were not photocrosslinked to any subunit. Binding of dTTP was enhanced by ATP, but by no other nucleotide (or deoxynucleotide). This binding of dTTP to epsilon, a subunit likely responsible for regulation of proofreading by the holoenzyme, may function in the control of the fidelity of replication.  相似文献   

16.
The conserved bacterial anticodon nuclease (ACNase) RloC and its phage-excluding homolog PrrC comprise respective ABC-adenosine triphosphatase (ATPase) and ACNase N- and C-domains but differ in three key attributes. First, prrC is always linked to an ACNase silencing, DNA restriction-modification (R-M) locus while rloC rarely features such linkage. Second, RloC excises its substrate's wobble nucleotide, a lesion expected to impede damage reversal by phage transfer RNA (tRNA) repair enzymes that counteract the nick inflicted by PrrC. Third, a distinct coiled-coil/zinc-hook (CC/ZH) insert likens RloC's N-region to the universal DNA damage checkpoint/repair protein Rad50. Previous work revealed that ZH mutations activate RloC's ACNase. Data shown here suggest that RloC has an internal ACNase silencing/activating switch comprising its ZH and DNA-break-responsive ATPase. The existence of this control may explain the lateral transfer of rloC without an external silencer and supports the proposed role of RloC as an antiviral contingency acting when DNA restriction is alleviated under genotoxic stress. We also discuss RloC's possible evolution from a PrrC-like ancestor.  相似文献   

17.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease efficiently cleaved an anticodon stem-loop (ASL) oligoribonucleotide containing the natural modified bases, suggesting this region harbors the specificity determinants. Assays of ASL analogs indicated that the 6-threonylcarbamoyl adenosine modification (t(6)A37) enhances the reactivity. The side chain of the modified wobble base 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) has a weaker positive effect depending on the context of other modifications. The s(2)U34 modification apparently has none and the pseudouridine (psi39) was inhibitory in most modification contexts. GC-rich but not IC-rich stems abolished the activity. Correlating the reported structural effects of the base modifications with their effects on anticodon nuclease activity suggests preference for substrates where the anticodon nucleotides assume a stacked A-RNA conformation and base pairing interactions in the stem are destabilized. Moreover, the proposal that PrrC residue Asp(287) contacts mnm(5)s(2)U34 was reinforced by the observations that the mammalian tRNA(Lys-3) wobble base 5-methoxycarbonyl methyl-2-thiouridine (mcm(5)s(2)U) is inhibitory and that the D287H mutant favors tRNA(Lys-3) over Escherichia coli tRNA(Lys). The detection of this mutation and ability of PrrC to cleave the isolated ASL suggest that anticodon nuclease may be used to cleave tRNA(Lys-3) primer molecules annealed to the genomic RNA template of the human immunodeficiency virus.  相似文献   

18.
Kinetic studies of the hydrolysis of platinum-DNA complexes by nuclease S1   总被引:1,自引:0,他引:1  
The antitumor agent cis-diamminedichloroplatinum(II) (cis-DDP) reacts covalently with DNA and disrupts its secondary structure. Damaged DNA, but not native DNA, is readily digested by S1 nuclease, an endonuclease specific for single stranded polynucleotides. We have measured S1 nuclease digestion of platinated DNA by the release of platinum-DNA adducts and compared it with digestion of unplatinated DNA. The rate of hydrolysis of damaged substrate from platinum-DNA complexes was less than the overall rate of digestion of nucleotides. Similar results were observed for platinum-DNA complexes in native, denatured or renatured conformations. The hydrolysis of denatured platinum-DNA complexes, rb = 0.075 platinum per nucleotide, obeyed Michaelis-Menten kinetics. Taking into account the level of DNA damage, Vm, for the release of platinated adducts was 0.6 times smaller than for digestion of unplatinated DNA. Km values and competition experiments indicated that the enzyme bound equally well to platinated and unplatinated substrates. Similar results were obtained for denatured DNA complexes with trans-DDP while [PtCl(diethylenetriamine)]Cl had no influence on nuclease digestion. These results suggest that bifunctional platinum-DNA lesions have contradictory effects on the hydrolysis of double stranded DNA by S1 nuclease. On one hand they create nuclease sensitive substrate by disrupting DNA secondary structure. On the other, they inhibit digestion of the damaged strand by increasing the activation energy for hydrolysis.  相似文献   

19.
Double-stranded DNA breaks (DSB) cause bacteria to augment expression of DNA repair and various stress response proteins. A puzzling exception educes the anticodon nuclease (ACNase) RloC, which resembles the DSB responder Rad50 and the antiviral, translation-disabling ACNase PrrC. While PrrC''s ACNase is regulated by a DNA restriction-modification (R-M) protein and a phage anti-DNA restriction peptide, RloC has an internal ACNase switch comprising a putative DSB sensor and coupled ATPase. Further exploration of RloC''s controls revealed, first, that its ACNase is stabilized by the activating DNA and hydrolysed nucleotide. Second, DSB inducers activated RloC''s ACNase in heterologous contexts as well as in a natural host, even when R-M deficient. Third, the DSB-induced activation of the indigenous RloC led to partial and temporary disruption of tRNAGlu and tRNAGln. Lastly, accumulation of CRISPR-derived RNA that occurred in parallel raises the possibility that the adaptive immunity and RloC provide the genotoxicated host with complementary protection from impending infections.  相似文献   

20.
Pre-existing host tRNAs are reprocessed during bacteriophage T4 infection of certain Escherichia coli strains. In this pathway, tRNALys is cleaved 5' to the wobble base by anticodon nuclease and is later restored in polynucleotide kinase and RNA ligase reactions. Anticodon nuclease depends on prr, a locus found only in host strains that restrict T4 mutants lacking polynucleotide kinase and RNA ligase; and on stp, the T4 suppressor of prr restriction. stp was cloned and the nucleotide sequences of its wild-type and mutant alleles determined. Their comparison defined an stp open reading frame of 29 codons at 162.8 to 9 kb of T4 DNA (1 kb = 10(3) base-pairs). We suggest that stp encodes a subunit of anticodon nuclease, perhaps one that harbors the catalytic site; while additional subunits, such as a putative prr gene product, impart protein folding environment and tRNA substrate recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号