共查询到20条相似文献,搜索用时 0 毫秒
1.
Alf Månsson 《Biophysical journal》2010,98(7):1237-1246
Despite intense efforts to elucidate the molecular mechanisms that determine the maximum shortening velocity and the shape of the force-velocity relationship in striated muscle, our understanding of these mechanisms remains incomplete. Here, this issue is addressed by means of a four-state cross-bridge model with significant explanatory power for both shortening and lengthening contractions. Exploration of the parameter space of the model suggests that an actomyosin-ADP state (AM∗ADP) that is separated from the actual ADP release step by a strain-dependent isomerization is important for determining both the maximum shortening velocity and the shape of the force-velocity relationship. The model requires a velocity-dependent, cross-bridge attachment rate to account for certain experimental findings. Of interest, the velocity dependence for shortening contraction is similar to that for population of the AM∗ADP state (with a velocity-independent attachment rate). This accords with the idea that attached myosin heads in the AM∗ADP state position the partner heads for rapid attachment to the next site along actin, corresponding to the apparent increase in attachment rate in the model. 相似文献
2.
Vincent A. Bamett 《Biophysical journal》1994,67(3):1360-1361
3.
Distributed Representations for Actin-Myosin Interaction in the Oscillatory Contraction of Muscle 总被引:7,自引:2,他引:7
下载免费PDF全文

In this paper we suggest and test a specific hypothesis relating the attachment-detachment cycle of cross bridges between actin (I) and myosin (A) filaments to the measured length-tension dynamics of active insect fibrillar flight muscle. It is first shown that if local A-filament strain perturbs the rate constants in the cross-bridge cycle appropriately, then exponentially delayed tension changes can follow imposed changes of length; the latter phenomenon is sufficient for the work-producing property of fibrillar muscle, as measured with small-signal forcing of length and at low Ca2+ concentration, and possibly for related effects described recently in frog striated muscle. It is not clear a priori that the above explanation of work production by fibrillar muscle will remain tenable when the viscoelastic complexity of the heterogeneous sarcomere is taken into account. However, White's (1967) recent mechanical and electron microscope study of the passive dynamics of glycerinated fibrillar muscle has produced a model of the distributed viscoeleastic structure sufficiently explicit that alternative schemes for cross-bridge force generation in this muscle can now be tested more critically than previously. Therefore, we derive and solve third-order partial-differential equations which relate local interfilament shear forces associated with the perturbed cross-bridge cycles to the over-all length-tension dynamics of an idealized sarcomere. We then show (a) that the starting hypothesis can account approximately for the small-signal dynamics of glycerinated muscle in the work-producing state over two decades of frequency and (b) that the rate constants for cross-bridge formation and breakage, restricted solely by fitting of the model to the mechanical data, determine a cycling rate of cross bridges in the model compatible with recent measurements of ATP hydrolysis rate vs. stretch in this muscle. Finally, the formulation is extended tentatively to the large-signal nonlinear case, and shown to compare favorably with previous suggestions for the origin of the work-producing dynamics of fibrillar flight muscle. 相似文献
4.
Michael D. Stern Gonzalo Pizarro Eduardo Ríos 《The Journal of general physiology》1997,110(4):415-440
The voltage-activated H+ selective conductance of rat alveolar epithelial cells was studied using
whole-cell and excised-patch voltage-clamp techniques. The effects of substituting deuterium oxide, D2O, for water, H2O, on both the conductance and the pH dependence of gating were explored. D+ was able to permeate
proton channels, but with a conductance only about 50% that of H+. The conductance in D2O was reduced more
than could be accounted for by bulk solvent isotope effects (i.e., the lower mobility of D+ than H+), suggesting
that D+ interacts specifically with the channel during permeation. Evidently the H+ or D+ current is not diffusion
limited, and the H+ channel does not behave like a water-filled pore. This result indirectly strengthens the hypothesis that H+ (or D+) and not OH− is the ionic species carrying current. The voltage dependence of H+ channel
gating characteristically is sensitive to pHo and pHi and was regulated by pDo and pDi in an analogous manner,
shifting 40 mV/U change in the pD gradient. The time constant of H+ current activation was about three times
slower (τact was larger) in D2O than in H2O. The size of the isotope effect is consistent with deuterium isotope effects for proton abstraction reactions, suggesting that H+ channel activation requires deprotonation of the channel. In contrast, deactivation (τtail) was slowed only by a factor ≤1.5 in D2O. The results are interpreted within the
context of a model for the regulation of H+ channel gating by mutually exclusive protonation at internal and external sites (Cherny, V.V., V.S. Markin, and T.E. DeCoursey. 1995. J. Gen. Physiol. 105:861–896). Most of the kinetic
effects of D2O can be explained if the pK
a of the external regulatory site is ∼0.5 pH U higher in D2O. 相似文献
5.
6.
An infrared radiation-detecting system was used to measure initial heat production in bull frog sartorius muscle at 15°C. Numerous tests with the system showed that thermal artifacts were not noticeable. Many previous measurements with myothermic thermopiles were corroborated with this method. In addition, a cooling phase as large as 0.39 of peak exothermicity was found during and after relaxation. Cooling diminished with both increasing sarcomere length and increasing duration of mechanical activity. No large rapid increase in heat rate accompanied a 0.6 reactivation at the peak of twitch tension. Above rest length, initial heat rate and the heat produced up to the peak of tension decreased nearly proportionally with overlap of myofilaments, while the total twitch initial heat decreased slightly. 相似文献
7.
Differences in the Charge Distribution of Glycerol-Extracted Muscle Fibers in Rigor, Relaxation, and Contraction 总被引:2,自引:2,他引:2
下载免费PDF全文

Glycerol-extracted rabbit psoas muscle fibers were impaled with KCl-filled glass microelectrodes. For fibers at rest-length, the potentials were significantly more negative in solutions producing relaxation than in solutions producing either rigor or contraction; further the potentials in the latter two cases were not significantly different. For stretched fibers, with no overlap between thick and thin filaments, the potentials did not differ in the rigor, the relaxation, or the contraction solutions. The potentials measured from fibers in rigor did not vary significantly with the sarcomere length. For relaxed fibers, however, the potential magnitude decreased with increasing sarcomere length. The difference between the potentials measured for rigor and relaxed fibers exhibited a nonlinear relationship with sarcomere length. The potentials from calcium-insensitive fibers were less negative in both the rigor and the relaxation solutions than those from normal fibers. When calcium-insensitive fibers had been incubated in Hasselbach and Schneider's solution plus MgCl2 or Guba-Straub's solution plus MgATP the potentials recorded upon impalement were similar in the rigor and the relaxation solution to those obtained from normal fibers in the relaxed state. It is concluded that the increase in the negative potential as the glycerinated fiber goes from rigor to relaxation may be due to an alteration in the conformation of the contractile proteins in the relaxed state. 相似文献
8.
The molecular regulation of striated muscle contraction couples the binding and dissociation of Ca2+ on troponin (Tn) to the movement of tropomyosin on actin filaments. In turn, this process exposes or blocks myosin binding sites on actin, thereby controlling myosin crossbridge dynamics and consequently muscle contraction. Using 3D electron microscopy, we recently provided structural evidence that a C-terminal extension of TnI is anchored on actin at low Ca2+ and competes with tropomyosin for a common site to drive tropomyosin to the B-state location, a constrained, relaxing position on actin that inhibits myosin-crossbridge association. Here, we show that release of this constraint at high Ca2+ allows a second segment of troponin, probably representing parts of TnT or the troponin core domain, to promote tropomyosin movement on actin to the Ca2+-induced C-state location. With tropomyosin stabilized in this position, myosin binding interactions can begin. Tropomyosin appears to oscillate to a higher degree between respective B- and C-state positions on troponin-free filaments than on fully regulated filaments, suggesting that tropomyosin positioning in both states is troponin-dependent. By biasing tropomyosin to either of these two positions, troponin appears to have two distinct structural functions; in relaxed muscles at low Ca2+, troponin operates as an inhibitor, while in activated muscles at high Ca2+, it acts as a promoter to initiate contraction. 相似文献
9.
10.
Pawan Sharma Sujata Basu Richard W. Mitchell Gerald L. Stelmack Judy E. Anderson Andrew J. Halayko 《PloS one》2014,9(7)
Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD) and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC) and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh) when compared to genetic control BL10ScSnJ mice (wild-type). In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM. 相似文献
11.
Ryan D. Mills Mitsuo Mita Jun-ichi Nakagawa Masaru Shoji Cindy Sutherland Michael P. Walsh 《The Journal of biological chemistry》2015,290(14):8677-8692
Depolarization of the vascular smooth muscle cell membrane evokes a rapid (phasic) contractile response followed by a sustained (tonic) contraction. We showed previously that the sustained contraction involves genistein-sensitive tyrosine phosphorylation upstream of the RhoA/Rho-associated kinase (ROK) pathway leading to phosphorylation of MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase (MLCP)) and myosin regulatory light chains (LC20). In this study, we addressed the hypothesis that membrane depolarization elicits activation of the Ca2+-dependent tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2). Pyk2 was identified as the major tyrosine-phosphorylated protein in response to membrane depolarization. The tonic phase of K+-induced contraction was inhibited by the Pyk2 inhibitor sodium salicylate, which abolished the sustained elevation of LC20 phosphorylation. Membrane depolarization induced autophosphorylation (activation) of Pyk2 with a time course that correlated with the sustained contractile response. The Pyk2/focal adhesion kinase (FAK) inhibitor PF-431396 inhibited both phasic and tonic components of the contractile response to K+, Pyk2 autophosphorylation, and LC20 phosphorylation but had no effect on the calyculin A (MLCP inhibitor)-induced contraction. Ionomycin, in the presence of extracellular Ca2+, elicited a slow, sustained contraction and Pyk2 autophosphorylation, which were blocked by pre-treatment with PF-431396. Furthermore, the Ca2+ channel blocker nifedipine inhibited peak and sustained K+-induced force and Pyk2 autophosphorylation. Inhibition of Pyk2 abolished the K+-induced translocation of RhoA to the particulate fraction and the phosphorylation of MYPT1 at Thr-697 and Thr-855. We conclude that depolarization-induced entry of Ca2+ activates Pyk2 upstream of the RhoA/ROK pathway, leading to MYPT1 phosphorylation and MLCP inhibition. The resulting sustained elevation of LC20 phosphorylation then accounts for the tonic contractile response to membrane depolarization. 相似文献
12.
Insect indirect flight muscle is activated by sinusoidal length change, which enables the muscle to work at high frequencies, and contracts isometrically in response to Ca2+. Indirect flight muscle has two TnC isoforms: F1 binding a single Ca2+ in the C-domain, and F2 binding Ca2+ in the N- and C-domains. Fibres substituted with F1 produce delayed force in response to a single rapid stretch, and those with F2 produce isometric force in response to Ca2+. We have studied the effect of TnC isoforms on oscillatory work. In native Lethocerus indicus fibres, oscillatory work was superimposed on a level of isometric force that depended on Ca2+ concentration. Maximum work was produced at pCa 6.1; at higher concentrations, work decreased as isometric force increased. In fibres substituted with F1 alone, work continued to rise as Ca2+ was increased up to pCa 4.7. Fibres substituted with various F1:F2 ratios produced maximal work at a ratio of 100:1 or 50:1; a higher proportion of F2 increased isometric force at the expense of oscillatory work. The F1:F2 ratio was 9.8:1 in native fibres, as measured by immunofluorescence, using isoform-specific antibodies. The small amount of F2 needed to restore work to levels obtained for the native fibre is likely to be due to the relative affinity of F1 and F2 for TnH, the Lethocerus homologue of TnI. Affinity of TnC isoforms for a TnI fragment of TnH was measured by isothermal titration calorimetry. The Kd was 1.01 μM for F1 binding and 22.7 nM for F2. The higher affinity of F2 can be attributed to two TnH binding sites on F2 and a single site on F1. Stretch may be sensed by an extended C-terminal domain of TnH, resulting in reversible dissociation of the inhibitory sequence from actin during the oscillatory cycle. 相似文献
13.
Nicole Vlahovich Anthony J. Kee Chris Van der Poel Emma Kettle Delia Hernandez-Deviez Christine Lucas Gordon S. Lynch Robert G. Parton Peter W. Gunning Edna C. Hardeman 《Molecular biology of the cell》2009,20(1):400-409
The functional diversity of the actin microfilaments relies in part on the actin binding protein tropomyosin (Tm). The muscle-specific Tms regulate actin-myosin interactions and hence contraction. However, there is less known about the roles of the numerous cytoskeletal isoforms. We have shown previously that a cytoskeletal Tm, Tm5NM1, defines a Z-line adjacent cytoskeleton in skeletal muscle. Recently, we identified a second cytoskeletal Tm in this region, Tm4. Here we show that Tm4 and Tm5NM1 define separate actin filaments; the former associated with the terminal sarcoplasmic reticulum (SR) and other tubulovesicular structures. In skeletal muscles of Tm5NM1 knockout (KO) mice, Tm4 localization was unchanged, demonstrating the specificity of the membrane association. Tm5NM1 KO muscles exhibit potentiation of T-system depolarization and decreased force rundown with repeated T-tubule depolarizations consistent with altered T-tubule function. These results indicate that a Tm5NM1-defined actin cytoskeleton is required for the normal excitation–contraction coupling in skeletal muscle. 相似文献
14.
Regulation of Tension in the Skinned Crayfish Muscle Fiber : I. Contraction and relaxation in the absence of Ca (pCa > 9)
下载免费PDF全文

J. P. Reuben P. W. Brandt M. Berman H. Grundfest 《The Journal of general physiology》1971,57(4):385-407
In isolated skinned crayfish muscle fibers bathed in solutions that were buffered to be virtually free of Ca2+ (pCa 8–10) the substrate for both contraction and relaxation is the MgNTP complex. Tension increased up to 50% of the maximum capability of the fiber as the substrate MgATP increased to an optimum (pMgATP = 5.5). Relaxation was induced by further increases in MgATP. Similar bell-shaped curves of tension vs. pMgNTP were obtained with UTP and ITP, but optimum pMgUTP was about 4.5 and optimum pMgITP was about 2.6. The relation between equilibrium tension and pMgNTP is described by an equation analogous to that for the kinetics of enzymes regulated by substrate inhibition. 相似文献
15.
Intracellular injections of the calcium-binding agent, EGTA,into single cannulated fibers of Balanus and Maia were ableto suppress, almost completely, the contractions induced byvarious contractile agents. The amount oE EGTA required in Maia fibers for the suppressionof the contractile response produced by caffeine and high-Ksaline, as has already been reported, was similar to the meanfiber calcium level. In Balanus fibers, however, although theamount of EGTA needed for the suppression of the caffeine-salineresponse was similar to the estimated level of fiber calcium,the amount required in the raised-K-saline experiments was considerablygreater. It has been suggested that membrane depolarizationunder these conditions allows calcium to enter the fiber fromthe external saline, the amount entering being related, at leastin part, to a large effective sarcolemmal surface area and thepresence of binding agent internally. The results of intracellularand plate-electrode stimulation of Belanus fibers also suggestedthat the fiber under certain conditions could utilize externalcalcium ions, while the results of plate-electrode stimulationof Maia fibers could be explained most easily in terms of mobilizationof mainly intracellular calcium for the process of contraction. Efflux of Sr89 ions from Balanus fibers under various conditionssuggested that this ion is bound and mobilized internally ina manner similar to calcium. The results are seen not to contradict a chanelled-current theoryfor e-c coupling of the type proposed for crayfish fibers. 相似文献
16.
Jingxuan Zhou Chengye Li Gaoqin Gu Qi Wang Mengyao Guo 《Biological trace element research》2018,183(1):138-146
Selenium (Se) is an essential micronutrient affecting various aspects of health. The balance of the Se concentration has an important protective and promoter effect on physiological function in inducing muscular disorders in smooth muscle. Selenoprotein N (SelN) is closely related to Ca2+ release. The present study aimed to determine the effects and mechanism of action of dietary Se on uterine smooth muscle contraction via SelN using a mouse model. Quantitative polymerase chain reaction (qPCR) analysis was performed to detect mRNA levels. Western blotting was performed to detect protein levels. The results of the immunohistochemical analysis showed that Se had an effect on the uterine smooth muscle. The Se-supplement increased the release of Ca2+, Ca2+-calmodulin (CaM) expression, myosin light chain kinase (MLCK) expression, and myosin light chain (MLC) phosphorylation but did not affect ROCK and RhoA in uterine smooth muscle. Furthermore, the lack of Se showed an opposite impact. The effects of Se regulation were closely related to SelN. The interference of mouse SelN was performed on the uterine smooth muscle cell. Additionally, the results displayed the regulation of Se on the release of Ca2+, CaM expression, MLCK expression, and MLC phosphorylation were significant inhibited, and there was no effect on ROCK and RhoA. In conclusion, Se played an important role in regulating the process of contraction in uterine smooth muscle with SelN. 相似文献
17.
Karla S. Ritter 《Archives of insect biochemistry and physiology》1983,1(3):281-296
Heliothis zea was reared on artificial diets containing Δ5-sterols (cholesterol, campesterol, or sitosterol), Δ7-sterols (lathosterol, epifungisterol, or spinasterol), or Δ0-sterols (cholestanol, epicoprostanol, campestanol, or sitostanol) in order to determine how different dietary sterols affect the type of sterols present in the tissues of the late-sixth-instar larva. Although all of the dietary sterols (except epicoprostanol) supported the growth of the larvae, not all of the sterols were metabolized to the same end products. In each case, at least 80% of the sterols in the tissues of the larvae retained the same nucleus as that of the dietary sterol, indicating that H. zea carries out very little metabolism of ring B of Δ5-, Δ7-, and Δ0-sterols. The larvae dealkylated the Δ5-, Δ7-, and Δ0-alkylsterols to 24-desalkylsterols, but a greater percentage of the Δ5-alkylsterols were metabolized in this manner. The sterols present as free sterols in the larva were also present as esterifed sterols which accounted for 2–4% of the total sterols. Therefore, the sterol composition of the tissues of H. zea can be altered by varying the dietary sterols. 相似文献
18.
A Method for Obtaining Longitudinal Cryostat Sections of Living Muscle Without Contraction Artifacts
Longitudinal cryostat sections of skeletal muscle picked up with glass slides onto which a film of ethylenediaminetetracetic acid (EDTA) has been dried after dipping in a 3% EDTA solution do not show the severe retraction artifacts obtained when plain glass slides are used. Histochemical techniques work well on the longitudinal sections after the EDTA has been rinsed away and remaining traces saturated with calcium, Morphologic preservation is good. Regularly distributed histochemical reaction products are found within any one fiber. 相似文献
19.
20.
On the Inhibition of Muscle Contraction Caused by Exposure to Hypertonic Solutions 总被引:1,自引:1,他引:1
下载免费PDF全文

The evidence supporting a site of inhibition of excitation contraction (E-C) coupling near the plasma membrane (the "glycerol effect," the K+-potentiating effect) for muscle in hypertonic solution was reinvestigated. It was found, using whole frog sartorii, that there was a rehydration of muscle soaked in glycerol Ringer after 30 min and a large swelling (to 140% after 1 hr soaking) upon return of the muscle to normal Ringer, suggesting that significant amounts of glycerol enter the fibers during this time. While contrary to the original report of the glycerol effect, this finding was consistent with other studies involving the use of single fibers. Also reexamined was the potentiating effect of K+ on the hypertonic inhibition of muscle contraction. It was found that muscles exposed to this KCl pretreatment swell so that they are less dehydrated in hypertonic solutions, thus accounting for the observed potentiation. After being treated instead with a K2-tartrate Ringer solution, muscles did not swell and, as determined with twitch recordings, did not display any potentiation in hypertonic solutions—even though the [K+] was higher than an osmotically equivalent KCl solution. The evidence was thus consistent with alternative hypotheses in which inhibition of contraction occurs at a later stage in E-C coupling or involves the contractile process itself. 相似文献