首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of separately or simultaneously induced dark chilling and drought stress were evaluated in two Glycine max (L.) Merrill cultivars. For the separately induced dark chilling treatment (C), plants were incubated at 8 °C during 9 consecutive dark periods. During the days, plants were kept at normal growth temperatures. For the separately induced drought treatment (D), plants were maintained at normal growth temperatures without irrigation. For the simultaneously induced dark chilling and drought stress treatment (CD), plants were dark chilled without irrigation. All treatments caused similar decreases in pre-dawn leaf water potential, but resulted in distinct physiological and biochemical effects on photosynthesis. In Maple Arrow, where C had the smallest effect on photosynthesis, prolonged CD caused less inhibition of photosynthesis compared to D. Compared to Fiskeby V, the photosynthetic apparatus of Maple Arrow appears to possess superior dark chilling tolerance, a property which probably also conveyed enhanced protection against CD. Proline accumulation was prevented by CD at the ψPD where D already resulted in considerable accumulation. The superior capacity for proline accumulation in Maple Arrow would seem to be an important factor in its stress tolerance. Antioxidant activity evoked by CD and D was higher than for C alone. In Fiskeby V, the small increase in ascorbate peroxidase (EC 1.11.1.7) activity, which was in most cases not accompanied by increased gluthatione reductase (EC 1.6.4.2) activity, could impact negatively on its stress tolerance. These results demonstrate large genotypic differences in response to chilling and drought stress, even between soybean cultivars regarded as chilling tolerant.  相似文献   

2.
The effects of dark chilling on CO2 assimilation, chlorophyll a fluorescence kinetics and nitrogen fixation were compared in two Glycine max (L.) Merr. genotypes. The aim was to elucidate the mechanisms by which photosynthesis was inhibited as well as identification of selection criteria for dark chilling tolerance. Seedlings were dark chilled (8 degrees C) for 9 consecutive nights but kept at normal day temperatures (28 degrees C). CO2 gas exchange analysis indicated that photosynthesis in Maple Arrow was inhibited largely as a result of stomatal limitation, while in Fiskeby V, it indicated inhibition of the mesophyll reactions. Increased intercellular CO2 concentration and decreased carboxylation efficiency suggested loss of Rubisco activity in Fiskeby V, although no effect on the KM (CO2) of Rubisco was observed. Quantification and deconvolution of the Chl a fluorescence transients into several phenomenological and biophysical parameters (JIP-test) revealed large genotypic differences in the response of PSII to dark chilling. These parameters differentially changed in the two genotypes during the progression of the chilling treatment. Among them, the performance index, reflecting several responses of the photochemical apparatus, provided the best preliminary overall assessment of the genotypes. In contrast, the quantum yield of primary photochemistry varphiPo (FV/FM) was quite insensitive. The recovery of most of the JIP-test parameters in Maple Arrow after 6 and 9 nights of dark chilling was a major genotypic difference. Genotypic differences were also observed with regard to the ureide response and N2 fixation appeared to be more sensitive to dark chilling than CO2 assimilation. The JIP-test provided information consistent with results derived from CO2 assimilation and N2 fixation studies suggesting that it can substitute the much more time-consuming methods for the detection of chilling stress and can well satisfy the requirements of a rapid and accurate screening method.  相似文献   

3.
Available evidence suggests that the stress‐induced increase in the activity of glucose‐6‐phosphate dehydrogenase (G6PDH, EC 1.1.1.49), the key regulatory enzyme of the oxidative pentose phosphate pathway, might often be related to the presence of plant water deficit. The response of G6PDH to dark chilling in chilling sensitive plant species is still unknown. In this communication we report on this response and its dependence on the presence of chill‐induced drought stress. A chilling sensitive soybean (Glycine max L. Merr.) genotype was exposed to dark chilling of the entire plant (whole‐chilled) or only the shoots and leaves (shoot‐chilled). The development of chill‐induced drought stress upon illumination was quantified by measurement of proline and relative water content (RWC). Chill‐induced drought stress (decrease in RWC and increase in proline content) developed with time in whole‐chilled plants, but not in shoot‐chilled plants. The response of the above‐mentioned treatments on G6PDH activity in fully expanded leaves was assessed. In parallel, the effects on CO2 assimilation, PSII activity and chloroplast fructose‐1,6‐bisphosphatase (FBPase EC 3.1.3.11) and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco EC 4.1.1.39) activity were quantified. A decrease in CO2 assimilation rate, FBPase activity and ribulose‐1,5‐bisphosphate (RuBP) content was observed in whole‐chilled but not in shoot‐chilled plants. However, in shoot‐chilled plants regulation of diurnal PSII activity was altered. The increase in the activation state of NADP‐dependent malate dehydrogenase (NADP‐MDH EC 1.1.1.82) in shoot‐chilled plants suggests an increase in stromal redox state. Although the two different dark chilling treatments resulted in distinct physiological and biochemical effects, both induced an increase in foliar G6PDH activity, suggesting an important role of this enzyme during and following dark chilling stress, irrespective of the presence of chill‐induced drought stress.  相似文献   

4.
Many C4 plants, including maize, perform poorly under chilling conditions. This phenomenon has been linked in part to decreased Rubisco abundance at lower temperatures. An exception to this is chilling‐tolerant Miscanthus, which is able to maintain Rubisco protein content under such conditions. The goal of this study was to investigate whether increasing Rubisco content in maize could improve performance during or following chilling stress. Here, we demonstrate that transgenic lines overexpressing Rubisco large and small subunits and the Rubisco assembly factor RAF1 (RAF1‐LSSS), which have increased Rubisco content and growth under control conditions, maintain increased Rubisco content and growth during chilling stress. RAF1‐LSSS plants exhibited 12% higher CO2 assimilation relative to nontransgenic controls under control growth conditions, and a 17% differential after 2 weeks of chilling stress, although assimilation rates of all genotypes were ~50% lower in chilling conditions. Chlorophyll fluorescence measurements showed RAF1‐LSSS and WT plants had similar rates of photochemical quenching during chilling, suggesting Rubisco may not be the primary limiting factor that leads to poor performance in maize under chilling conditions. In contrast, RAF1‐LSSS had improved photochemical quenching before and after chilling stress, suggesting that increased Rubisco may help plants recover faster from chilling conditions. Relatively increased leaf area, dry weight and plant height observed before chilling in RAF1‐LSSS were also maintained during chilling. Together, these results demonstrate that an increase in Rubisco content allows maize plants to better cope with chilling stress and also improves their subsequent recovery, yet additional modifications are required to engineer chilling tolerance in maize.  相似文献   

5.
In the experiments reported in this paper, we characterised the physiological and biochemical factors involved in the chilling-induced inhibition of photosynthetic carbon metabolism in soybean [Glycine max (L.) Merr.] genotypes of temperate and tropical adaptation. Plants of Maple Arrow (temperate genotype) and Java 29 (tropical genotype) were exposed to a single night at 8 degrees C. Dark chilling resulted in the inhibition of diurnal CO2 assimilation rate and decreased stomatal conductance in both genotypes. Further analysis, however, revealed a difference in the response of the two genotypes. Stomatal limitation was largely responsible for the inhibition of CO2 assimilation in Maple Arrow, whereas mesophyll limitation dominated the inhibition in Java 29. The results indicate that inhibition of stromal fructose-1,6-bisphosphatase (sFBPase; EC 3.1.3.11) activity and impaired electron transport capacity were responsible for the decrease in ribulose-1,5-bisphosphate (RuBP) regeneration capacity in Java 29. Sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity was progressively inhibited during the light period in this genotype and might impose an additional constraint on photosynthesis. Maple Arrow appears to possess, at least with respect to photosynthetic carbon metabolism, physiological and biochemical characteristics that contribute towards its superior dark chilling tolerance.  相似文献   

6.
Regulation of sucrose-starch accumulation and its effect on CO2 gas exchange and electron transport were studied in low-temperature-stressed and cold-acclimated spring (Katepwa) and winter (Monopol) cultivars of wheat (Triticum aestivum L.). Low-temperature stress of either the spring or winter cultivar was associated with feedback-limited photosynthesis as indicated by a 50–60% reduction in CO2 assimilation rates, twofold lower ATP/ADP ratio, and threefold lower electron transport rate than 20°C-grown control plants. However, no limitations were evident at the level of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) in low-temperature-stressed plants. Cold acclimation of the spring cultivar resulted in similar feedback-limited photosynthesis observed during low-temperature stress. In contrast, cold acclimation of the winter cultivar resulted in an adjustment of CO2 assimilation rates to that of control plants. However, we show, for the first time, that this capacity to adjust CO2 assimilation still appeared to be associated with limited triose phosphate utilisation, a twofold lower ATP/ADP ratio, a reduction in electron transport rates but no restriction at the level of Rubisco compared to controls grown at 20°C. Thus, contrary to previous suggestions, we conclude that cold-acclimated Monopol appears to exhibit feedback limitations at the level of electron transport characteristic of cold-stressed plants despite the maintenance of high rates of CO2 assimilation. Furthermore, the differential capacity of the winter cultivar to adjust CO2 assimilation rates was associated with higher levels of sucrose accumulation and a threefold higher sucrose-phosphate synthase activity despite an apparent limitation in triose phosphate utilisation.Abbreviations AGPase ADP-glucose pyrophosphorylase - FBPase fructose-1,6-bisphosphatase - Fru 6-P fructose 6-phosphate - Fru 1,6-BP fructose 1,6-bisphosphate - Glc 6-P glucose 6-phosphate - PGA 3-phosphoglyceric acid - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - RuBP ribulose 1,5-bisphosphate - SPS sucrose-phosphate synthase - Triose-P triose phosphate  相似文献   

7.
The effects of chilling under low light (9/7 °C, 100 µmol m?2 s?1) on the photosynthetic and antioxidant capacities and subsequent recovery were examined in two (one tolerant and one sensitive) cucumber genotypes. Chilling resulted in an irreversible inhibition of net CO2 assimilation and growth for the sensitive genotype, which was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (Vcmax), the capacity for ribulose‐1,5‐bisphosphate regeneration (Jmax), Rubisco content and activity, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO2 supply or inorganic phosphate limitation. In contrast, CO2 assimilation for the tolerant genotype fully recovered after chill. The chill‐induced decrease in the proportion of electron flux for photosynthetic carbon reduction was mostly compensated by an O2‐dependent alternative electron flux driven by the water–water cycle, especially in the sensitive genotype. Compared with the tolerant genotype, the sensitive genotype after chill showed reduced capacity for scavenging reactive oxygen species and increased accumulation of reactive oxygen species. The balance between O2‐dependent alternative electron flux and the capacity for scavenging reactive oxygen species in response to chill plays a major role in determining the tolerance of cucumber leaves to this stress factor. It is concluded that the water–water cycle operates at high rates when CO2 assimilation is restricted in cucumber leaves subjected to chill and low light conditions.  相似文献   

8.
In this study, we tested for the temporal occurrence of photosynthetic acclimation to elevated [CO2] in the flag leaf of two important cereal crops, rice and wheat. In order to characterize the temporal onset of acclimation and the basis for any observed decline in photosynthetic rate, we characterized net photosynthesis, gs, gm, Ci/Ca, Ci/Cc, Vcmax, Jmax, cell wall thickness, content of Rubisco, cytochrome (Cyt) f, N, chlorophyll and carbohydrate, mRNA expression for rbcL and petA, activity for Rubisco, sucrose phosphate synthase (SPS) and sucrose synthase (SS) at full flag expansion, mid‐anthesis and the late grain‐filling stage. No acclimation was observed for either crop at full flag leaf expansion. However, at the mid‐anthesis stage, photosynthetic acclimation in rice was associated with RuBP carboxylation and regeneration limitations, while wheat only had the carboxylation limitation. By grain maturation, the decline of Rubisco content and activity had contributed to RuBP carboxylation limitation of photosynthesis in both crops at elevated [CO2]; however, the sharp decrease of Rubisco enzyme activity played a more important role in wheat. Although an increase in non‐structural carbohydrates did occur during these later stages, it was not consistently associated with changes in SPS and SS or photosynthetic acclimation. Rather, over time elevated [CO2] appeared to enhance the rate of N degradation and senescence so that by late‐grain fill, photosynthetic acclimation to elevated [CO2] in the flag leaf of either species was complete. These data suggest that the basis for photosynthetic acclimation with elevated [CO2] may be more closely associated with enhanced rates of senescence, and, as a consequence, may be temporally dynamic, with significant species variation.  相似文献   

9.
Miscanthus is a C4 perennial grass being developed for bioenergy production in temperate regions where chilling events are common. To evaluate chilling effects on Miscanthus, we assessed the processes controlling net CO2 assimilation rate (A) in Miscanthus x giganteus (M161) and a chilling‐sensitive Miscanthus hybrid (M115) before and after a chilling treatment of 12/5 °C. The temperature response of A and maximum Rubisco activity in vitro were identical below 20 °C in chilled and unchilled M161, demonstrating Rubisco capacity limits or co‐limits A at cooler temperatures. By contrast, A in M115 decreased at all measurement temperatures after growth at 12/5 °C. Rubisco activity in vitro declined in proportion to the reduction in A in chilled M115 plants, indicating Rubisco capacity is responsible in part for the decline in A. Pyruvate orthophosphate dikinase activities were also reduced by the chilling treatment when assayed at 28 °C, indicating this enzyme may also contribute to the reduction in A in M115. The maximum extractable activities of PEPCase and NADP‐ME remained largely unchanged after chilling. The carboxylation efficiency of the C4 cycle was depressed in both genotypes to a similar extent after chilling. ΦPCO2 remained unchanged in both genotypes indicating the C3 and C4 cycles decline equivalently upon chilling.  相似文献   

10.
11.
Effects of low‐temperature stress, cold acclimation and growth at high irradiance in a spring (Triticum aestivum L. cv. Katepwa) and a winter wheat (Triticum aestivum L. cv. Monopol) were examined in leaves and crowns with respect to the sucrose utilisation and carbon allocation. Light‐saturated and carbon dioxide (CO2)‐saturated rates of CO2 assimilation were decreased by 50% in cold‐stressed spring and winter wheat cultivars. Cold‐ or high light‐acclimated Katepwa spring wheat maintained light‐saturated rates of CO2 assimilation comparable to those of control spring wheat. In contrast, cold‐ or high light‐acclimated winter wheat maintained higher light and CO2‐saturated rates of CO2 assimilation than non‐acclimated controls. In leaves, during either cold stress, cold acclimation or acclimation to high irradiance, the sucrose/starch ratio increased by 5‐ to 10‐fold and neutral invertase activity increased by 2‐ to 2.5‐fold in both the spring and the winter wheat. In contrast, Monopol winter wheat, but not Katepwa spring wheat, exhibited a 3‐fold increase in leaf sucrose phosphate synthase (SPS) activity, a 4‐fold increase in sucrose:sucrose fructosyl transferase activity and a 6.6‐fold increase in acid invertase upon cold acclimation. Although leaves of cold‐stressed and high light‐grown spring and winter wheat showed 2.3‐ to 7‐fold higher sucrose levels than controls, these plants exhibited a limited capacity to adjust either sucrose phosphate synthase or sucrose synthase activity (SS[s]). In addition, the acclimation to high light resulted in a 23–31% lower starch abundance and no changes at the level of fructan accumulation in leaves of either winter or spring wheat when compared with controls. However, high light‐acclimated winter wheat exhibited a 1.8‐fold higher neutral invertase activity and high light‐acclimated spring wheat exhibited an induction of SS(d) activity when compared with controls. Crowns of Monopol showed higher fructan accumulation than Katepwa upon cold and high light acclimation. We suggest that the differential adjustment of CO2‐saturated rates of CO2 assimilation upon cold acclimation in Monopol winter wheat, as compared with Katepwa spring wheat, is associated with the increased capacity of Monopol for sucrose utilisation through the biosynthesis of fructans in the leaves and subsequent export to the crowns. In contrast, the differential adjustment of CO2‐saturated rates of CO2 assimilation upon high light acclimation of Monopol appears to be associated with both increased fructan and starch accumulation in the crowns.  相似文献   

12.
Apex and Bristol cultivars of oilseed rape (Brassica napus) were irradiated with 0.63 W m?2 of UV-B over 5 d. Analyses of the response of net leaf carbon assimilation to intercellular CO2 concentration were used to examine the potential limitations imposed by stomata, carboxylation velocity and capacity for regeneration of ribulose 1,5-bis-phosphate on leaf photosynthesis. Simultaneous measurements of chlorophyll fluorescence were used to estimate the maximum quantum efficiency of photosystem II (PSII) photochemistry, the quantum efficiency of linear electron transport at steady-state photosynthesis, and the light and CO2-saturated rate of linear electron transport. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) content and activities were assayed in vitro. In both cultivars the UV-B treatment resulted in decreases in the light-saturated rate of CO2 assimilation, which were accompanied by decreases in carboxylation velocity and Rubisco content and activity. No major effects of UV-B were observed on end-product inhibition and stomatal limitation of photosynthesis or the rate of photorespiration relative to CO2 assimilation. In the Bristol cultivar, photoinhibition of PSII and loss of linear electron transport activity were observed when CO2 assimilation was severely inhibited. However, the Apex cultivar exhibited no major inhibition of PSII photochemistry or linear electron transport as the rate of CO2 assimilation decreased. It is concluded that loss of Rubisco is a primary factor in UV-B inhibition of CO2 assimilation.  相似文献   

13.
Inhibition of the net photosynthetic CO2 assimilation rate (Pn) by high temperature was examined in oak (Quercus pubescens L.) leaves grown under natural conditions. Combined measurements of gas exchange and chlorophyll (Chl) a fluorescence were employed to differentiate between inhibition originating from heat effects on components of the thylakoid membranes and that resulting from effects on photosynthetic carbon metabolism. Regardless of whether temperature was increased rapidly or gradually, Pn decreased with increasing leaf temperature and was more than 90% reduced at 45 °C as compared to 25 °C. Inhibition of Pn by heat stress did not result from reduced stomatal conductance (gs), as heat‐induced reduction of gs was accompanied by an increase of the intercellular CO2 concentration (Ci). Chl a fluorescence measurements revealed that between 25 and 45 °C heat‐dependent alterations of thylakoid‐associated processes contributed only marginally, if at all, to the inhibition of Pn by heat stress, with photosystem II being remarkably well protected against thermal inactivation. The activation state of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) decreased from about 90% at 25 °C to less than 30% at 45 °C. Heat stress did not affect Rubisco per se, since full activity could be restored by incubation with CO2 and Mg2+. Western‐blot analysis of leaf extracts disclosed the presence of two Rubisco activase polypeptides, but heat stress did not alter the profile of the activase bands. Inhibition of Pn at high leaf temperature could be markedly reduced by artificially increasing Ci. A high Ci also stimulated photosynthetic electron transport and resulted in reduced non‐photochemical fluorescence quenching. Recovery experiments showed that heat‐dependent inhibition of Pn was largely, if not fully, reversible. The present results demonstrate that in Q. pubescens leaves the thylakoid membranes in general and photosynthetic electron transport in particular were well protected against heat‐induced perturbations and that inhibition of Pn by high temperature closely correlated with a reversible heat‐dependent reduction of the Rubisco activation state.  相似文献   

14.
After exposure to a doubled CO2 concentration of 750 µL L?1 for 2 months, average relative growth rate (RGR) of Mokara Yellow increased 25%. The two carboxylating enzymes, ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPCase), responded differently to CO2 enrichment. There was a significant daytime down‐regulation in Rubisco activity in the leaves of CO2‐enriched plants. However, PEPCase activity in CO2‐enriched plants was much higher in the dark period, although it was slightly lower during the daytime than that at ambient CO2. Leaf sucrose–phosphate synthase (SPS) and sucrose synthase (SS) activities in CO2‐enriched plants increased markedly, along with a night‐time increase in total titratable acidity and malate accumulation. There was a remarkable increase in the levels of indole‐3‐acetic acid (IAA), gibberellins A1 and A3 (GA1+3), isopentenyladenosine (iPA) and zeatin riboside (ZR) in the expanding leaves of plants grown at elevated CO2. It is suggested that (1) the down‐regulation of Rubisco and up‐regulation of SPS and SS are two important acclimation processes that are beneficial because it enhanced both photosynthetic capacity at high CO2 and reduced resource investment in excessive Rubisco capacity; (2) the increased levels of plant hormones in CO2‐enriched M. Yellow might play an important role in controlling its growth and development.  相似文献   

15.
The mechanisms controlling the photosynthetic performance of C4 plants at low temperature were investigated using ecotypes of Bouteloua gracilis Lag. from high (3000 m) and low (1500 m) elevation sites in the Rocky Mountains of Colorado. Plants were grown in controlled‐environment cabinets at a photon flux density of 700 μ mol m?2 s?1 and day/night temperatures of 26/16 °C or 14/7 °C. The thermal response of the net CO2 assimilation rate (A) was evaluated using leaf gas‐exchange analysis and activity assays of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase (PEPCase) and pyruvate,orthophosphate dikinase (PPDK). In both ecotypes, a reduction in measurement temperature caused the CO2‐saturated rate of photosynthesis to decline to a greater degree than the initial slope of A versus the intercellular CO2 response, thereby reducing the photosynthetic CO2 saturation point. As a consequence, A in normal air was CO2‐saturated at sub‐optimal temperatures. Ecotypic variation was low when grown at 26/16 °C, with the major difference between the ecotypes being that the low‐elevation plants had higher A; however, the ecotypes responded differently when grown at cool temperature. At temperatures below the thermal optimum, A in high‐elevation plants grown at 14/7 °C was enhanced relative to plants grown at 26/16 °C, while A in low‐elevation plants grown at 14/7 °C was reduced compared to 26/16 °C‐grown plants. Photoinhibition at low growth temperature was minor in both ecotypes as indicated by small reductions in dark‐adapted Fv/Fm. In both ecotypes, the activity of Rubisco was equivalent to A below 17 °C but well in excess of A above 25 °C. Activities of PEPCase and PPDK responded to temperature in a similar proportion relative to Rubisco, and showed no evidence for dissociation that would cause them to become principal limitations at low temperature. Because of the similar temperature response of Rubisco and A, we propose that Rubisco is a major limitation on C4 photosynthesis in B. gracilis below 17 °C. Based on these results and for theoretical reasons associated with how C4 plants use Rubisco, we further suggest that Rubisco capacity may be a widespread limitation upon C4 photosynthesis at low temperature.  相似文献   

16.
In this study it has been shown that increased diffusional resistances caused by salt stress may be fully overcome by exposing attached leaves to very low [CO2] (~ 50 µmol mol?1), and, thus a non‐destructive‐in vivo method to correctly estimate photosynthetic capacity in stressed plants is reported. Diffusional (i.e. stomatal conductance, gs, and mesophyll conductance to CO2, gm) and biochemical limitations to photosynthesis (A) were measured in two 1‐year‐old Greek olive cultivars (Chalkidikis and Kerkiras) subjected to salt stress by adding 200 mm NaCl to the irrigation water. Two sets of ACi curves were measured. A first set of standard ACi curves (i.e. without pre‐conditioning plants at low [CO2]), were generated for salt‐stressed plants. A second set of ACi curves were measured, on both control and salt‐stressed plants, after pre‐conditioning leaves at [CO2] of ~ 50 µmol mol?1 for about 1.5 h to force stomatal opening. This forced stomata to be wide open, and gs increased to similar values in control and salt‐stressed plants of both cultivars. After gs had approached the maximum value, the ACi response was again measured. The analysis of the photosynthetic capacity of the salt‐stressed plants based on the standard ACi curves, showed low values of the Jmax (maximum rate of electron transport) to Vcmax (RuBP‐saturated rate of Rubisco) ratio (1.06), that would implicate a reduced rate of RuBP regeneration, and, thus, a metabolic impairment. However, the analysis of the ACi curves made on pre‐conditioned leaves, showed that the estimates of the photosynthetic capacity parameters were much higher than in the standard ACi responses. Moreover, these values were similar in magnitude to the average values reported by Wullschleger (Journal of Experimental Botany 44, 907–920, 1993) in a survey of 109 C3 species. These findings clearly indicates that: (1) salt stress did affect gs and gm but not the biochemical capacity to assimilate CO2 and therefore, in these conditions, the sum of the diffusional resistances set the limit to photosynthesis rates; (2) there was a linear relationship (r2 = 0.68) between gm and gs, and, thus, changes of gm can be as fast as those of gs; (3) the estimates of photosynthetic capacity based on ACi curves made without removing diffusional limitations are artificially low and lead to incorrect interpretations of the actual limitations of photosynthesis; and (4) the analysis of the photosynthetic properties in terms of stomatal and non‐stomatal limitations should be replaced by the analysis of diffusional and non‐diffusional limitations of photosynthesis. Finally, the C3 photosynthesis model parameterization using in vitro‐measured and in vivo‐measured kinetics parameters was compared. Applying the in vivo‐measured Rubisco kinetics parameters resulted in a better parameterization of the photosynthesis model.  相似文献   

17.
A complementary DNA for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was cloned from tobacco (Nicotiana tabacum) and fused in the antisense orientation to the cauliflower mosaic virus 35S promoter. This antisense gene was introduced into the tobacco genome, and the resulting transgenic plants were analyzed to assess the effect of the antisense RNA on Rubisco activity and photosynthesis. The mean content of extractable Rubisco activity from the leaves of 10 antisense plants was 18% of the mean level of activity of control plants. The soluble protein content of the leaves of anti-small subunit plants was reduced by the amount equivalent to the reduction in Rubisco. There was little change in phosphoribulokinase activity, electron transport, and chlorophyll content, indicating that the loss of Rubisco did not affect these other components of photosynthesis. However, there was a significant reduction in carbonic anhydrase activity. The rate of CO2 assimilation measured at 1000 micromoles quanta per square meter per second, 350 microbars CO2, and 25°C was reduced by 63% (mean value) in the antisense plants and was limited by Rubisco activity over a wide range of intercellular CO2 partial pressures (pi). In control leaves, Rubisco activity only limited the rate of CO2 assimilation below a pi of 400 microbars. Despite the decrease in photosynthesis, there was no reduction in stomatal conductance in the antisense plants, and the stomata still responded to changes in pi. The unchanged conductance and lower CO2 assimilation resulted in a higher pi, which was reflected in greater carbon isotope discrimination in the leaves of the antisense plants. These results suggest that stomatal function is independent of total leaf Rubisco activity.  相似文献   

18.
Effects of growth light intensity on the temperature dependence of CO2 assimilation rate were studied in tobacco (Nicotiana tabacum) because growth light intensity alters nitrogen allocation between photosynthetic components. Leaf nitrogen, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) and cytochrome f (cyt f) contents increased with increasing growth light intensity, but the cyt f/Rubisco ratio was unaltered. Mesophyll conductance to CO2 diffusion (gm) measured with carbon isotope discrimination increased with growth light intensity but not with measuring light intensity. The responses of CO2 assimilation rate to chloroplast CO2 concentration (Cc) at different light intensities and temperatures were used to estimate the maximum carboxylation rate of Rubisco (Vcmax) and the chloroplast electron transport rate (J). Maximum electron transport rates were linearly related to cyt f content at any given temperature (e.g. 115 and 179 µmol electrons mol?1 cyt f s?1 at 25 and 40 °C, respectively). The chloroplast CO2 concentration (Ctrans) at which the transition from RuBP carboxylation to RuBP regeneration limitation occurred increased with leaf temperature and was independent of growth light intensity, consistent with the constant ratio of cyt f/Rubisco. In tobacco, CO2 assimilation rate at 380 µmol mol?1 CO2 concentration and high light was limited by RuBP carboxylation above 32 °C and by RuBP regeneration below 32 °C.  相似文献   

19.
Three-month-old mulberry (Morus alba L.) cultivars (salt tolerant cv. S1 and salt sensitive cv. ATP) were subjected to different concentrations of NaCl for 12 d. Leaf area, dry mass accumulation, total chlorophyll (Chl) content, net CO2 assimilation rate (P N), stomatal conductance (g s), and transpiration rate (E) declined, and intercellular CO2 concentration (C i) increased. The changes in these parameters were dependent on stress severity and duration, and differed between the two cultivars. The tolerant cultivar showed a lesser reduction in P N and g s coupled with a better C i and water use efficiency (WUE) than the sensitive cultivar. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
A dynamic model of leaf CO2 assimilation was developed as an extension of the canonical steady‐state model, by adding the effects of energy‐dependent non‐photochemical quenching (qE), chloroplast movement, photoinhibition, regulation of enzyme activity in the Calvin cycle, metabolite concentrations, and dynamic CO2 diffusion. The model was calibrated and tested successfully using published measurements of gas exchange and chlorophyll fluorescence on Arabidopsis thaliana ecotype Col‐0 and several photosynthetic mutants and transformants affecting the regulation of Rubisco activity (rca‐2 and rwt43), non‐photochemical quenching (npq4‐1 and npq1‐2), and sucrose synthesis (spsa1). The potential improvements on CO2 assimilation under fluctuating irradiance that can be achieved by removing the kinetic limitations on the regulation of enzyme activities, electron transport, and stomatal conductance were calculated in silico for different scenarios. The model predicted that the rates of activation of enzymes in the Calvin cycle and stomatal opening were the most limiting (up to 17% improvement) and that effects varied with the frequency of fluctuations. On the other hand, relaxation of qE and chloroplast movement had a strong effect on average low‐irradiance CO2 assimilation (up to 10% improvement). Strong synergies among processes were found, such that removing all kinetic limitations simultaneously resulted in improvements of up to 32%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号