首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fungal peroxygenases are novel extracellular heme-thiolate biocatalysts that are capable of catalyzing the selective monooxygenation of diverse organic compounds, using only H(2)O(2) as a cosubstrate. Little is known about the physiological role or the catalytic mechanism of these enzymes. We have found that the peroxygenase secreted by Agrocybe aegerita catalyzes the H(2)O(2)-dependent hydroxylation of linear alkanes at the 2-position and 3-position with high efficiency, as well as the regioselective monooxygenation of branched and cyclic alkanes. Experiments with n-heptane and n-octane showed that the hydroxylation proceeded with complete stereoselectivity for the (R)-enantiomer of the corresponding 3-alcohol. Investigations with a number of model substrates provided information about the route of alkane hydroxylation: (a) the hydroxylation of cyclohexane mediated by H(2)(18)(2) resulted in complete incorporation of (18)O into the hydroxyl group of the product cyclohexanol; (b) the hydroxylation of n-hexane-1,1,1,2,2,3,3-D(7) showed a large intramolecular deuterium isotope effect [(k(H)/k(D))(obs)] of 16.0 ± 1.0 for 2-hexanol and 8.9 ± 0.9 for 3-hexanol; and (c) the hydroxylation of the radical clock norcarane led to an estimated radical lifetime of 9.4 ps and an oxygen rebound rate of 1.06 × 10(11) s(-1). These results point to a hydrogen abstraction and oxygen rebound mechanism for alkane hydroxylation. The peroxygenase appeared to lack activity on long-chain alkanes (> C(16)) and highly branched alkanes (e.g. tetramethylpentane), but otherwise exhibited a broad substrate range. It may accordingly have a role in the bioconversion of natural and anthropogenic alkane-containing structures (including alkyl chains of complex biomaterials) in soils, plant litter, and wood.  相似文献   

2.
In hemoproteins the relaxation mechanism of iron is Orbach for high spin (HS) and Raman for low spin (LS). We found that in met-hemoglobin and met-myoglobin, under conditions in which the two spin states coexist, both the HS and the LS states relax to the lattice through Orbach-like processes. Alos, very short (approximately 1 ns) and temperature independent transverse relaxation times T2 were estimated. This may result from the unusual electronic structure of mixed states hemoproteins that allows thermal equilibrium and interconversion of the spin states.  相似文献   

3.
Cytochrome P450 enzymes promote a number of oxidative biotransformations including the hydroxylation of unactivated hydrocarbons. Whereas the long-standing consensus view of the P450 mechanism implicates a high-valent iron-oxene species as the predominant oxidant in the radicalar hydrogen abstraction/oxygen rebound pathway, more recent studies on isotope partitioning, product rearrangements with 'radical clocks', and the impact of threonine mutagenesis in P450s on hydroxylation rates support the notion of the nucleophilic and/or electrophilic (hydro)peroxo-iron intermediate(s) to be operative in P450 catalysis in addition to the electrophilic oxenoid-iron entity; this may contribute to the remarkable versatility of P450s in substrate modification. Precedent to this mechanistic concept is given by studies with natural and synthetic P450 biomimics. While the concept of an alternative electrophilic oxidant necessitates C-H hydroxylation to be brought about by a cationic insertion process, recent calculations employing density functional theory favour a 'two-state reactivity' scenario, implicating the usual ferryl-dependent oxygen rebound pathway to proceed via two spin states (doublet and quartet); state crossing is thought to be associated with either an insertion or a radicalar mechanism. Hence, challenge to future strategies should be to fold the disparate and sometimes contradictory data into a harmonized overall picture.  相似文献   

4.
Alpha-thujone (1alpha) and beta-thujone (1beta) were used to investigate the mechanism of hydrocarbon hydroxylation by cytochromes P-450(cam) (CYP101) and P-450(BM3) (CYP102). The thujones are hydroxylated by these enzymes at various positions, but oxidation at C-4 gives rise to both rearranged and unrearranged hydroxylation products. Rearranged products result from the formation of a radical intermediate that can undergo either inversion of stereochemistry or ring opening of the adjacent cyclopropane ring. Both of these rearrangements, as well as a C-4 desaturation reaction, are observed. The ring opening clock gives oxygen rebound rates that range from 0.2 x 10(10) to 2.8 x 10(10) s(-1) for the different substrate and enzyme combinations. The C-4 inversion reaction provides independent confirmation of a radical intermediate. The phenol product expected if a C-4 cationic rather than radical intermediate is formed is not detected. The results are consistent with a two-state process and provide support for a radical rebound but not a hydroperoxide insertion mechanism for cytochrome P-450 hydroxylation.  相似文献   

5.
High-valent iron in chemical and biological oxidations   总被引:1,自引:0,他引:1  
Various aspects of the reactivity of iron(IV) in chemical and biological systems are reviewed. Accumulated evidence shows that the ferryl species [Fe(IV)O](2+) can be formed under a variety of conditions including those related to the ferrous ion-hydrogen peroxide system known as Fenton's reagent. Early evidence that such a species could hydroxylate typical aliphatic C-H bonds included regioselectivities and stereospecificities for cyclohexanol hydroxylation that could not be accounted for by a freely diffusing hydroxyl radical. Iron(IV) porphyrin complexes are also found in the catalytic cycles of cytochrome P450 and chloroperoxidase. Model oxo-iron(IV) porphyrin complexes have shown reactivity similar to the proposed enzymatic intermediates. Mechanistic studies using mechanistically diagnostic substrates have implicated a radical rebound scenario for aliphatic hydroxylation by cytochrome P450. Likewise, several non-heme diiron hydroxylases, AlkB (Omega-hydroxylase), sMMO (soluble methane monooxygenase), XylM (xylene monooxygenase) and T4moH (toluene monooxygenase) all show clear indications of radical rearranged products indicating that the oxygen rebound pathway is a ubiquitous mechanism for hydrocarbon oxygenation by both heme and non-heme iron enzymes.  相似文献   

6.
The present study is a part of an effort to understand the mechanism of the oxidative chlorination, as performed by a biomimetic non-heme iron complex. This catalytically active complex is generated from a peroxide and [(TPA)FeIIICl2]+ [TPA is tris(2-pyridylmethyl)amine]. The reaction catalyzed by [(TPA)FeCl2]+/ROOH involves either [(TPA)ClFeV=O]2+ or [(TPA)ClFeIV=O]+ as an intermediate. On the basis of density functional theory the reaction of these two possible catalysts with cyclohexane is investigated. A question addressed is how the competing hydroxylation of the substrate is avoided. It is demonstrated that the high-valent iron complex [(TPA)Cl–FeV=O]2+ is capable of stereospecific alkane chlorination, based on an ionic rather than on a radical pathway. In contrast, the results found for [(TPA)ClFeIV=O]+ cannot explain the experimental findings. In this case the transition states for chlorination and hydroxylation are energetically too close. The exclusive chlorination of the substrate by Cl–FeIV=O may be explained by an indirect or a direct effect, altering the position of the competing rebound barriers. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Experiments on cryptically chiral ethanes have indicated that the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) catalyzes the hydroxylation of ethane with total retention of configuration at the carbon center attacked. This result would seem to rule out a radical mechanism for the hydroxylation chemistry, at least as mediated by this enzyme. The interpretation of subsequent experiments on n-propane, n-butane, and n-pentane has been complicated by hydroxylation at both the pro-R and pro-S secondary C-H bonds, where the hydroxylation takes place. It has been suggested that these results merely reflect presentation of both the pro-R and pro-S C-H bonds to the hot "oxygen atom" species generated at the active site, and that the oxo-transfer chemistry, in fact, proceeds concertedly with retention of configuration. In the present work, we have augmented these earlier studies with experiments on [2,2-2H2]butane and designed d,l form chiral dideuteriobutanes. Essentially equal amounts of (2R)-[3,3-2H2]butan-2-ol and (2R)-[2-2H1]butan-2-ol are produced upon hydroxylation of [2,2-2H2]butane. The chemistry is stereospecific with full retention of configuration at the secondary carbon oxidized. In the case of the various chiral deuterated butanes, the extent of configurational inversion has been shown to be negligible for all the chiral butanes examined. Thus, the hydroxylation of butane takes place with full retention of configuration in butane as well as in the case of ethane. These results are interpreted in terms of an oxo-transfer mechanism based on side-on singlet oxene insertion across the C-H bond similar to that previously noted for singlet carbene insertion (Kirmse, W., and Ozkir, I. S. (1992) J. Am. Chem. Soc. 114, 7590-7591). Finally, we discuss how even the oxene insertion mechanism, with "spin crossover" in the transition state, could lead to small amounts of radical rearrangement products, if and when such products are observed. A scheme is described that unifies the two extreme mechanistic limits, namely the concerted oxene insertion and the hydrogen abstraction radical rebound mechanism within the same over-arching framework.  相似文献   

8.
We investigated the possibility that blood pressure elevation induced by salt excess may be secondary to a neurogenic mechanism. The compound SK&F 64139 (50 mg/kg) known to inhibit central and peripheral phenylethanolamine N-methytransferase (PNMT) the enzyme necessary for the conversion of norepinephrine to epinephrine, was given by oral gavage to two groups of subtotally nephrectomized rats maintained for five days on either a high salt (HS) or low salt (LS) diet respectively. Blood urea nitrogen (BUN) and hematocrit were not different between the two groups, while body weight and serum Na were significantly higher in the HS animals. Baseline mean blood pressure (BP) was higher in the HS animals (HS 154 ± 4.7 vs LS 121 ± 3.7 mmHg, p<0.001) and decreased by 39 ± 6.9 mmHg one and one half hour post SK&F 64139 to normotensive levels in the HS as opposed to a decrease of 10 ± 1.8 mmHg in the LS group. Baseline heart rate (HR) was higher in the LS group (474 ± 17 beats/min) vs the HS group (408 ± 17, p<0.05), and decreased significantly after SK&F 64139 in both groups to the same extent (by 17.6% in the HS vs 13.3% in the LS). A third group of subtotally nephrectomized rats maintained for five days on a HS diet were given by oral gavage the compount SK&F 29661 (100 mg/kg), a PNMT inhibitor which does not cross the blood-brain barrier. Following SK&F 29661, there was no significant decrease in mean BP (153 ± 5 to 149 ± 4 mmHg) and a less than 2% decrease in HR. Baseline plasma norepinephrine (NE) was higher in the HS as compared to the LS group (1.50 ± 0.16 vs 0.904±0.15 ng/ml, respectively, p<0.05) and a significant correlation was found between plasma NE level and decrease in BP following SK&F 64139 (r=0.65, p<0.01). Not withstanding possible effects of some ancillary properties of SK&F 64139, these data support the hypothesis that a neurogenic component, possibly mediated via central epinephrine containing neurons, contributes to the BP elevation induced by salt excess.  相似文献   

9.
The mechanism of aldehyde to carboxylic acid conversion catalyzed by P450 enzymes via a series of reactions was studied systematically for the first time with density functional theory calculations. A two-state reactivity mechanism has been proposed, which can be adopted for many aldehyde oxidation reactions catalyzed by P450 enzymes. The mechanism involves initial hydrogen abstraction as the rate-limiting step and this is followed by steps of oxygen rebound without barriers owing to the quick recombination of the resultant radical species. Meanwhile, in an attempt to explore whether there exist some rules for the hydroxylation of aldehyde substrates by P450, the transition state barriers of the rate-limiting step for a series of aldehyde hydroxylation reactions have been compared. A predictive pattern of extended barrier/bond energy correlation for different hydroxylations of aldehyde substrates by P450 has been established, which was further confirmed to be a reliable reactivity scale by experimental results. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
A mechanism for beta-chlorophenethylamine inhibition of dopamine beta-monooxygenase has been postulated in which enzyme-bound alpha-aminoacetophenone is generated, followed by an intramolecular redox reaction to yield a ketone-derived radical cation as the enzyme inhibitory species (Mangold, J. B., and Klinman, J. P. (1984) J. Biol. Chem. 259, 7772-7779). If correct, additional compounds capable of producing enzyme-bound (formula; see text) reductant should inhibit dopamine beta-monooxygenase. Phenylacetaldehyde was chosen to test this model, since beta-hydroxyphenylacetaldehyde is expected to function as a reductant in a manner analogous to alpha-aminoacetophenone. Phenylacetaldehyde exhibits the properties of a mechanism-based inhibitor. Kinetic parameters are comparable to beta-chlorophenethylamine under both initial velocity and inactivation conditions. Since phenylacetaldehyde bears little resemblance to beta-chlorophenethylamine, its analogous inhibitory action provides support for an intramolecular redox reaction (via beta-hydroxyphenylacetaldehyde oxidation to a radical cation) in dopamine beta-monooxygenase inactivation. beta-Hydroxyphenylacetaldehyde was identified as the enzymatic product of phenylacetaldehyde turnover. As predicted, this product behaves both as a time-dependent inhibitor of dopamine beta-monooxygenase and as an electron donor in enzyme-catalyzed hydroxylation of tyramine to octopamine. Phenylacetamide and p-hydroxyphenylacetamide are also found to be mechanism-based inhibitors of dopamine beta-monooxygenase. In this case the product of hydroxylation (beta-hydroxyphenylacetamide) is redox inactive and, therefore, is unable to function as either a reductant or an inhibitor. Thus, mechanism-based inhibitors are divided into two types: type I, which undergoes hydroxylation prior to inactivation, and type II, which only requires hydrogen atom abstraction. A general mechanism for dopamine beta-monooxygenase inactivation is described, in which a common mechanistic radical intermediate is formed from both pathways.  相似文献   

11.
Y Jin  J D Lipscomb 《Biochemistry》1999,38(19):6178-6186
The soluble form of methane monooxygenase (MMO) isolated from methanotrophic bacteria catalyzes the O2-dependent conversion of methane to methanol, as well as the adventitious oxidation of many other hydrocarbons. In past studies, it was reported that the oxidation reaction of methylcubane, a radical clock substrate, catalyzed by MMO from Methylococcus capsulatus (Bath) gave only cubylmethanol as the product rather than methylcubanol(s) or rearranged products characteristic of a radical formed on the methyl group [Choi, S.-Y., Eaton, P. E., Hollenberg, P. F., Liu, K. E., Lippard, S. J., Newcomb, M., Putt, D. A., Upadhyaya, S. P., and Xiong, Y. (1996) J. Am. Chem. Soc. 118, 6547-6555]. Such a substrate radical intermediate would be expected if the mechanism of MMO involves hydrogen atom abstraction as indicated by many previous mechanistic studies. Here it is shown that the reaction of methylcubane with the reconstituted MMO system from Methylosinus trichosporium OB3b yields both cubylmethanol and methylcubanols, with methyl hydroxylation favored over cubyl hydroxylation. This unexpected regioselectivity indicates steric effects on the reaction in agreement with past product distribution studies. In addition, the apparent majority product of the reaction is tentatively assigned as one of the possible rearranged products for this radical probe, on the basis of gas chromatography and mass spectrometry data. This result suggests the formation of a radical intermediate in the reaction, thus supporting a radical-based mechanism for this form of MMO.  相似文献   

12.
Cytochrome P450 enzymes catalyze a number of oxidations in nature including the difficult hydroxylations of unactivated positions in an alkyl group. The consensus view of the hydroxylation reaction 10 years ago was that a high valent iron-oxo species abstracts a hydrogen atom from the alkyl group to give a radical that subsequently displaces the hydroxy group from iron in a homolytic substitution reaction (hydrogen abstraction-oxygen rebound). More recent mechanistic studies, as summarized in this review, indicated that the cytochrome P450-catalyzed "hydroxylation reaction" is complex, involving multiple mechanisms and multiple oxidants. In addition to the iron-oxo species, another electrophilic oxidant apparently exists, either the hydroperoxo-iron intermediate that precedes iron-oxo or iron-complexed hydrogen peroxide formed by protonation of the hydroperoxo-iron species on the proximal oxygen. The other electrophilic oxidant appears to react by insertion of OH(+) into a C-H bond to give a protonated alcohol. Computational work has suggested that iron-oxo can react through multiple spin states, a low-spin ensemble that reacts by insertion of oxygen, and a high-spin ensemble that reacts by hydrogen atom abstraction to give a radical.  相似文献   

13.
Cytochromes P450cam and P450BM3 oxidize alpha- and beta-thujone into multiple products, including 7-hydroxy-alpha-(or beta-)thujone, 7,8-dehydro-alpha-(or beta-)thujone, 4-hydroxy-alpha-(or beta-)thujone, 2-hydroxy-alpha-(or beta-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring-opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 +/- 0.3 x 10(10) s(-1) to 12.5 +/- 3 x 10(10) s(-1) for the trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-alpha-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450(cam) active-site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of alpha-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, with at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent.  相似文献   

14.
Regulation of atrial natriuretic hormone (ANH) receptor binding and aldosterone suppression was studied in isolated adrenal glomerulosa cells from rats fed a high-salt (HS) or low-salt (LS) diet for 3 days. In plasma of HS rats, aldosterone levels were 5 times lower and immunoreactive ANH two times higher than in LS rats. Competitive binding studies showed the same affinity for human atrial natriuretic hormone (hANH) in both pools of cells, but receptor density was 50% higher on LS cells. A linear ANH analog that binds to non-guanylate-cyclase-coupled receptors did not show increased binding to LS cells. Cyclic GMP production in response to hANH was identical in both groups. The aldosterone-inhibitory effect of hANH on both groups of basal and angiotensin II-stimulated cells was also identical. Thus a short-term high-salt diet causes decreased density of ANH receptors in glomerulosa cells without changing biological activity of ANH. These results suggest that dietary salt content changes the number of ANH receptors and that non-guanylate-cyclase-coupled receptors contain at least two classes of receptors.  相似文献   

15.
Since morpholine oxidation has recently been shown to involve Cytochrome P450, the study on its mechanism at molecular level using quantum chemical calculations for the model of cytochrome active site is reported here. The reaction pathway is investigated for two electronic states, the doublet and the quartet, by means of density functional theory. The results show that morpholine hydroxylation occurs through hydrogen atom abstraction and rebound mechanism. However, in the low spin state, the reaction is concerted and hydrogen atom abstraction yields directly ferric-hydroxy morpholine complex without a distinct rebound step while in quartet state the reaction is stepwise. The presence of nitrogen in a morpholine heterocycle is postulated to greatly facilitate hydrogen abstraction. The hydroxylated product undergoes intramolecular hydrogen atom transfer from hydroxy group to nitrogen, leading to the cleavage of the C-N bond and the formation of 2-(2-aminoethoxy) acetaldehyde. The cleavage of the C-N bond is indicated as the rate-determining step for the studied reaction. The assistance of explicit water molecule is shown to lower the energy barrier for the C-N bond cleavage in enzymatic environment whereas solvent effects mimicked by COSMO solvent model have minor influence on relative energies along the pathway.  相似文献   

16.
Chan SI  Chen KH  Yu SS  Chen CL  Kuo SS 《Biochemistry》2004,43(15):4421-4430
The particulate methane monooxygenase (pMMO) is a complex membrane protein complex that has been difficult to isolate and purify for biochemical and biophysical characterization because of its instability in detergents used to solubilize the enzyme. In this perspective, we summarize the progress recently made toward obtaining a purified pMMO-detergent complex and characterizing the enzyme in pMMO-enriched membranes. The purified pMMO is a multi-copper protein, with ca. 15 copper ions sequestered into five trinuclear copper clusters: two for dioxygen chemistry and alkane hydroxylation (catalytic or C-clusters) and three to provide a buffer of reducing equivalents to re-reduce the C-clusters following turnover (electron transfer or E-clusters). The enzyme is functional when all the copper ions are reduced. When the protein is purified under ambient aerobic conditions in the absence of a hydrocarbon substrate, only the C-clusters are oxidized; there is an apparent kinetic barrier for electron transfer from the E-cluster copper ions to the C-clusters under these conditions. Evidence is provided in support of both C-clusters participating in the dioxygen chemistry, but only one C-cluster supporting alkane hydroxylation. Acetylene modification of the latter C-cluster in the hydrophobic pocket of the active site lowers or removes the kinetic barrier for electron transfer from the E-clusters to the C-clusters so that all the copper ions could be fully oxidized by dioxygen. A model for the hydroxylation chemistry when a hydrocarbon substrate is bound to the active site of the hydroxylation C-cluster is presented. Unlike soluble methane monooxygenase (sMMO), pMMO exhibits limited substrate specificity, but the hydroxylation chemistry is highly regioselective and stereoselective. In addition, the hydroxylation occurs with total retention of configuration of the carbon center that is oxidized. These results are consistent with a concerted mechanism involving direct side-on insertion of an active singlet "oxene" from the activated copper cluster across the "C-H" bond in the active site. Finally, in our hands, both the purified pMMO-detergent complex and pMMO-enriched membranes exhibit high NADH-sensitive as well as duroquinol-sensitive specific activity. A possible role for the two reductants in the turnover of the enzyme is proposed.  相似文献   

17.
Several new aspects of the O-O bond cleavage and alkane hydroxylation mechanisms have been studied by hybrid density functional theory in this reinvestigation of methane monooxygenase. As concerning key intermediates in these reactions, a new important low-lying state is found, described either as Fe2(III,V) or as Fe2(III,IV)O. A fully optimized transition state for O-O bond cleavage has been determined. It is suggested that the large difference in optimal size (as determined in gas phase) of the complex, before and after the O-O bond cleavage, leads to an additional driving force for the reaction, not considered previously. The strain of the enzyme is estimated to lead to a driving force in the forward direction of about 5 kcal/mol, which could explain some of the pH dependence found in recent experiments. For the hydroxylation reaction, a clean hydrogen abstraction transition state leading to a substrate radical is again found, in contrast to interpretations of radical clock experiments. An explanation, based on new results, is suggested that could account for both the experimental and theoretical results.  相似文献   

18.
The nitric-oxide synthases (NOSs) make nitric oxide and citrulline from l-arginine. How the bound cofactor (6R)-tetrahydrobiopterin (H4B) participates in Arg hydroxylation is a topic of interest. We demonstrated previously that H4B radical formation in the inducible NOS oxygenase domain (iNOSoxy) is kinetically coupled to the disappearance of a heme-dioxy intermediate and to Arg hydroxylation. Here we report single turnover studies that determine and compare the kinetics of these transitions in Arg hydroxylation reactions catalyzed by the oxygenase domains of endothelial and neuronal NOSs (eNOSoxy and nNOSoxy). There was a buildup of a heme-dioxy intermediate in eNOSoxy and nNOSoxy followed by a monophasic transition to ferric enzyme during the reaction. The rate of heme-dioxy decay matched the rates of H4B radical formation and Arg hydroxylation in both enzymes. The rates of H4B radical formation differed such that nNOSoxy (18 s(-1)) > iNOSoxy (11 s(-1)) > eNOSoxy (6 s(-1)), whereas the lifetimes of the resulting H4B radical followed an opposite rank order. 5MeH4B supported a three-fold faster radical formation and greater radical stability relative to H4B in both eNOSoxy and nNOSoxy. Our results indicate the following: (i) the three NOSs share a common mechanism, whereby H4B transfers an electron to the heme-dioxy intermediate. This step enables Arg hydroxylation and is rate-limiting for all subsequent steps in the hydroxylation reaction. (ii) A direct correlation exists between pterin radical stability and the speed of its formation in the three NOSs. (iii) Uncoupled NO synthesis often seen for eNOS at low H4B concentrations may be caused by the slow formation and poor stability of its H4B radical.  相似文献   

19.
This study evaluated the feasibility of assessing continuous strain distributions on fracture callus cross-sections with an electronic speckle pattern interferometry (ESPI) system. Mid-sagittal callus cross-sections were harvested from ovine tibiae. One low stiffness (LS) specimen and one high stiffness (HS) specimen were selected to evaluate the feasibility for strain acquisition over a range of callus properties. The HS specimen was 147 times stiffer in compression than the LS specimen. ESPI captured continuous strain distributions on both specimens. Peak strain was located adjacent to cortical boundaries in the osteotomy gap. In response to 5N compression, peak compressive strain of 5.8% in the LS specimen was over two orders of magnitude higher than peak compressive strain of 0.013% in the HS specimen. In conclusion, ESPI-based strain acquisition enables reproducible quantification of strain distributions on callus cross-sections. Such measurements may support validation of computational models and evaluation of experimental results in fracture healing research.  相似文献   

20.
The evolutionary implications of the Temperature–Size Rule (TSR) in ectotherms is debatable; it is uncertain whether size decrease with temperature increase is an adaptation or a non-adaptive by-product of some temperature-dependent processes. We tested whether (i) the size of the rotifer Lecane inermis affects fecundity in a way that depends on the combination of low or high temperature and oxygen content and (ii) the proximate mechanism underlying TSR in this species is associated with nuclei size adjustment (a proxy of cell size).Small-type and large-type rotifers were obtained by culturing at different temperatures prior to the experiment and then exposed to combinations of two temperature and two oxygen conditions. Fecundity was estimated and used as a measure of fitness. Nuclei and body sizes were measured to examine the response to both environmental factors tested.The results show the following for L. inermis. (i) Body size affects fecundity in response to both temperature and oxygen, supporting a hypothesis regarding the contribution of oxygen in TSR. (ii) Large individuals are generally more fecund than small ones; however, under a combination of high temperature and poor oxygen conditions, small individuals are more fecund than large ones, in accordance with a hypothesis of the adaptive significance of TSR. (iii) The body size response to temperature is realised by nuclei size adjustment. (iv) Nuclei size changes in response to temperature and oxygen conditions, in agreement with hypotheses on the cellular mechanism underlying TSR and on a contribution of oxygen availability in TSR. These results serve as empirical evidence for the adaptive significance of TSR and validation of the cellular mechanism for the observed response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号