首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In studies of postnatal human development the skeletal maturation of the hand has been found to be a better indicator of general physical maturation than attained body height. For assessment of prenatal human development the Crown-rump length (CRL) has so far been the most commonly used measure. The object of the present study is to examine the possibility of also using the skeletal maturation of the hand as a maturity indicator in fetal development. The study is based upon a radiographic and histochemical investigation of 169 human fetuses. On the basis of counting silver-impregnated diaphyses on radiographs of the hand and foot a maturity indicator (CNO = Composite Number of Ossified bones in hand and foot) was established. Owing to the marked regularity of the recorded ossification pattern, the CNO parameter can be used for evaluating fetal maturation during the early half of the prenatal period. To supplement the assessment of skeletal maturation during the later stages of development, a classification based on the shape of some bones was included in the study. In many cases fetuses of the same size (CRL) exhibited different stages of skeletal maturation (CNO). In accordance with findings from assessment of postnatal development, a more accurate evaluation of fetal development is obtained by combining the size parameter CRL with an assessment of fetal skeletal maturation, CNO.  相似文献   

2.
The purpose of the present study was to describe normal midsagittal craniofacial morphology in second trimester human fetuses. Measurements of the cranial base angle and the prognathism of the maxilla and the mandible were performed on radiographs of cranial midsagittal tissue blocks of 52 fetuses with a gestational age from 13 to 27 weeks. Special procedures were developed for the definitions of the nasion and sella reference points on the radiographs in the early stages of fetal development. Mean data were reported for stages of crown rump length (CRL) and maturation of the fetal cranial base (MSS), usable as reference in assessment of pathological fetal crania in reports and autopsy procedures. Regression equations were determined for the regression of the angular values on CRL, MSS, and general skeletal maturation (TNO). The cranial base angle was found to decrease significantly, and the angles of prognathism to increase significantly with increasing CRL, TNO, and MSS values. It was suggested that these simultaneous and similar changes in the three angles could be accounted for by the upwards movement of the sella point produced by a cranial displacement of the pituitary fossa caused by local cartilagenous growth and bony remodelling during the period of study. The study thus reflects the influence of cranial skeletal maturation on the early development in shape of the craniofacial complex.  相似文献   

3.
This study assesses chronological age of immature individuals from the degree of ossification evident in the foot skeleton. We considered all tarsal and ray bones in various combinations to determine the most sensitive indicators of chronological age. Skeletal maturity was rated according to a subjective but simple scoring system applied to radiographs of normal feet of children of known chronological age. Scales for assessing the primary center of ossification, secondary center of ossification, and state of fusion are defined. In general, as expected, females show earlier onset of skeletal maturity than males; in particular, females in our sample are skeletally mature in most elements beginning 48 months prior to the earliest incidence of skeletal maturity in males for the same bones. Females in our sample show a marked tendency toward skeletal maturity of all elements by 150 months of age, while males do not show the same tendency until approximately 200 months of age. In general within each sex, consecutive states of fusion show broad overlap in range of chronological age within each bone. Combining scores from several different bones enables a reasonable estimate of potential age in a test application of the model.  相似文献   

4.
Comparisons of hand/wrist radiographs of neonatal Cebus albifrons (n = 14) and Cebus apella (n = 4) with those of Saimiri sciureus boliviensis (n = 9) and Macaca mulatta (n = 63) reveal that the cebid monkeys show much less skeletal ossification at birth than macaques. Differences in gestation time alone cannot account for the differences in skeletal maturity at birth in the two groups of monkeys. The skeletal precocity of the newborn macaques indicates that their ossification either begins earlier in gestation or proceeds at a more rapid rate, or both. This, in turn, raises questions about the timing of organogenesis and gestational comparability in cebid and cercopithecid monkeys. The advanced state of ossification seen in macaques at birth is not typical of other groups of anthropoid primates, including Cebus, Saimiri, Pan and Homo, and may represent an ontogenetic specialization.  相似文献   

5.
The skeletal maturation of Japanese-American White hybrids is discussed in relation to that of Japanese and Whites. Assessment of skeletal maturation was made on 323 radiographs of 57 boys and 151 of 33 girls studied semi-longitudinally from 3 to 18 years on the basis of the Tanner-Whitehouse method (62). The skeletal maturity scores show a tendency for a greater advance in childhood for the Whites than for the hybrids and the Japanese. However, the preadolescent spurt of skeletal maturity occurs earlier in the Japanese and the hybrids than in the Whites, and the hybrids show the intermediate skeletal maturity scores between those of the Japanese and the Whites at and after adolescence.  相似文献   

6.
Patterns of growth and variation of the appendicular skeleton were examined in Thorius, a speciose genus of minute terrestrial plethodontid salamanders from southern Mexico. Observations were based primarily on ontogenetic series of each of five species that collectively span the range of adult body size in the genus; samples of adults of each of seven additional species provided supplemental estimates of the full range of variation of limb skeletal morphology. Limbs are generally reduced, i.e., pedomorphic, in both overall size and development, and they are characterized by a pattern of extreme variation in the composition of the limb skeleton, especially mesopodial elements, both within and between species. Fifteen different combinations of fused carpal or tarsal elements are variably present in the genus, producing at least 18 different overall carpal or tarsal arrangements, many of which occur in no other plethodontid genus. As many as four carpal or tarsal arrangements were observed in single population samples of each of several; five tarsal arrangements were observed in one population of T. minutissimus. Left-right asymmetry of mesopodial arrangement in a given specimen is also common. In contrast, several unique, nonpedomorphic features of the limb skeleton, including ossification of the typically cartilaginous adult mesopodial elements and ontogenetic increase in the degree of ossification of long bones, are characteristic of all species and distinguish Thorius from most related genera. They form part of a mechanism of determinate skeletal growth that restricts skeletal growth after sexual maturity. Interspecific differences in the timing of the processes of appendicular skeletal maturation relative to body size are well correlated with interspecific differences in mean adult size and size at sexual maturity, suggesting that shifts in the timing of skeletal maturation provide a mechanism of achieving adult size differentiation among species. Processes of skeletal maturation that confer determinate skeletal growth in Thorius are analogous to those typical of most amniotes – both groups exhibit ontogenetic reduction and eventual disappearance of the complex of stratified layers of proliferating and maturing cartilage in long bone epiphyses – but, unlike most amniotes, Thorius lacks secondary ossification centers. Thus, the presence of secondary ossification centers cannot be used as a criterion for establishing determinate skeletal growth in all vertebrates.  相似文献   

7.
8.
The maturation process from the appearance to the fusion of the secondary ossification centers of extremities was studied in Wistar rats aged 0 to 134 weeks. The examination of the secondary ossification centers made by radiography. The assessment of the stage of development was made in accordance with the criteria proposed by Ohwada and Sutow. The secondary ossification center was found to be take one of the following three types of maturation processes : (1) the acute ossification, (2) the delayed ossification, and (3) the incomplete ossification. No fusion was observed up to 134 weeks in certain epiphyses of the rat. This type of ossification designated as the incomplete ossification may be specific to the mouse and rat. The relative lengths of time required for appearance and fusion in the average prospective life were obtained for the rat. They were compared with those of the mouse and man. The relative length of time necessary for maturity of the secondary ossification centers was shown to be the shortest in the rat and the longest in man. The results suggested that the rat may reach maturity in the bone age at 17 to 21 weeks of age. The rat at this age may be regarded as being adult corresponding to age 17 weeks in mice and 18 to 24 years in man.  相似文献   

9.
A new approach to the measurement of skeletal maturity has been described. This was applied to the distal end of the femur in boys aged one month to four years. It is planned to extend this study to girls and to other ages and sites and to other bones in the knee area. The study began with the testing of reported indicators of skeletal maturity in respect of replicability, validity, discrimination and universality. As a result, seven qualitative graded indicators and three quantitative ratios were selected for further investigation. Maturity scores based on each qualitative indicator can be estimated using parameters from a simple probit analysis with chronological age as the independent variable. The statistical factors that influence the usefulness of these indicators have been discussed. The quantitative indicators investigated appear very useful as measures of maturity although some are redundant. The planned extension of the present study should allow the formulation of an appropriate model for the measurement of skeletal maturity by combining qualitative and quantitative data.  相似文献   

10.
The assessment of skeletal maturity is basically a method. How one makes this assessment or what one does with the assessment is dictated by the research and/or clinical problem at hand. A variety of methods have been suggested for the assessment of skeletal maturity, although the two most commonly used are the inspectional and bone specific approaches. Several of the proposed methods are considered, with primary emphasis upon the problems, factors, and/or alternatives related to the choice of one method over another.  相似文献   

11.
The appearance of the secondary centers of ossification was investigated in hand and foot radiographs of 112 fetal and neonatal Macaca nemestrina and a maturational index calculated using a scoring system that differentiated between the initial and later stages of ossification. Cumulative incremental curves of skeletal maturation, constructed by plotting the maturational indices against gestational age, demonstrated three distinct periods of ossification: the First Acceleration when primary centers appear, the Plateau, and the Second Acceleration when the secondary centers ossify. Similar curves are constructed for human prenatal and postnatal ossification. The results are also compared with those reported for M. mulatta, and the bases of the observed differences are discussed. Compared with other primates, the fetal and neonatal macaque shows a developmental precocity which may be an ontogenetic adaptation to the socioecological setting of terrestrial life.  相似文献   

12.
Age at death of a single skeletal individual or a group is essential information in archaeological, paleoanthropological, and forensic contexts. Dental remains are the most commonly used age indicators, but when the dentition is not available, or too few teeth are present for an accurate age assessment, other age indicators such as skeletal maturation must be used. Of particular utility in this regard is the fusion of the epiphyses of the infracranial skeleton. Here we present new aging standards based on the infracranial maturation of individuals from the known age and sex collection from Coimbra, Portugal. We scored infracranial epiphyseal fusion and spheno-occipital synchondrosis closure (64 loci of ossification in total) on 137 skeletons from individuals between 7 and 29 years old. We further discuss developmental differences between the sexes and similarities and differences between the Coimbra documented collection and other published aging standards.  相似文献   

13.
14.
Ossification of the human fetal basicranium   总被引:3,自引:0,他引:3  
Previous investigations of prenatal development of the human cranium have not identified the sequence of its ossification. The purpose of the present study was to elucidate the pattern of skeletal maturity of the cranial bones in the midsagittal region anterior to the foramen magnum. This study is based upon a radiographic and histochemical investigation of midsagittal tissue blocks of the cranial bases of 73 human fetuses derived from the first half of the prenatal period. A marked regularity in the ossification pattern of the bones in the midsagittal part of the human cranium was observed. Ossification starts in the frontal bone. The sequence in which the next bones ossify is occipital bone, basisphenoid bone, presphenoid bone, and ethmoid bone. The material was divided into 7 maturity stages devised for this analysis. The stages were related to general fetal size (crown-rump length) and to general fetal maturation (composite number of ossified bones in hand and foot). Skeletal development of the median part of the human cranium is not strictly correlated with the size or the stage of general maturation of the fetuses. Knowledge of normal skeletal development is necessary for understanding anomalies of development.  相似文献   

15.
Heritability of skeletal maturity and bone growth is discussed on the basis of intrapair resemblances (correlation coefficients) and differences (revised percent deviations) in mono- and dizygotic twins and random pairs of unrelated children. A series of 1072 radiographs of the right hand and wrist in 63 male and 70 female pairs of monozygotic twins, and 25 male and 21 female pairs of dizygotic twins aged 12 to 18 years studied longitudinally in Tokyo were used. Skeletal maturity based on the TW2 age suggests higher heritability than bone growth based on the second metacarpal dimensions. In the latter, length has higher heritability than width and cortical thickness. A dosage effect seems to be suggested in width and some indices in the second metacarpal, but is not confirmed in skeletal maturation.  相似文献   

16.
The presacral vertebrae have various secondary centers of ossification, whose timing of fusion can be used for age estimation of human skeletal remains up to the middle to the latter third decade. However, detailed information about the age at which these secondary centers of ossification fuse has been lacking. In this study, the timing of epiphyseal union in presacral vertebrae was studied in a sample of modern Portuguese skeletons (57 females and 47 males) between the ages of 9 and 30, taken from the Lisbon documented skeletal collection. A detailed photographic record of these epiphyses and the age ranges for the different stages of epiphyseal union are provided. Partial union of epiphyses was observed from 11 to 27 years of age. In general, centers of ossification begin to fuse first in the cervical and lumbar vertebrae, followed by centers of ossification in the thoracic region. The first center of ossification to complete fusion is usually that of the mammillary process in lumbar vertebrae. This is usually followed by that of the transverse process, spinous transverse process, and annular ring, regardless of vertebra type. There were no statistically significant sex differences in timing of fusion, but there was a trend toward early maturation in females for some vertebra or epiphyses. Bilateral epiphyses did not show statistically significant differences in timing of fusion. This study offers information on timing of fusion of diverse epiphyseal locations useful for age estimation of complete or fragmented human skeletal remains. Am J Phys Anthropol, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Growth retardation is a consistent finding in animal studies on the effect of sodium valproate (NaVP) in the embryo. Apart from fetal weight, the state of ossification in the embryo may be regarded as an indication of growth. The present study was to determine what effect sodium valproate at human therapeutic drug plasma levels had on the craniofacial skeletal pattern in the CD-1 mouse embryo relative to oxygen conditions, drug treatment or the interaction of the two. Two NaVP-filled Alzet osmotic minipumps were implanted subcutaneously on day 5 of gestation for continuous delivery of a total daily dosage of 850 mg/kg for 7 days. During this same time period the dams were also exposed to either normoxic (21% oxygen), hyperoxic (50% oxygen), or hypoxic (12% oxygen) controlled environments. Dams were removed from the oxygen chambers on day 12 and killed on day 18 of gestation. The fetuses were then processed for skeletal evaluation of the craniofacial region. Ossification centers were present in all but six of the skeletal elements studied. The primary ossification delay was in the tympanic bony labyrinth. In addition, there was a decrease in maxillary and mandibular length and cranial base measurements. The greatest toxic effect on the fetus for all skeletal components studied was in the NaVP/hypoxia treated group. This finding suggests that fetal skeletal maturation may be affected by a combination of intrauterine as well as external factors.  相似文献   

18.
19.
Arrest in long bone growth and the subsequent resumption of growth may be visible as radiopaque transverse lines in radiographs (Harris lines, HL; Harris, HA. 1933. Bone growth in health and disease. London: Oxford University Press). The assessment of individual age at occurrence of such lines, as part of paleopathological skeletal studies, is time-consuming and shows large intra- and interobserver variability. Thus, a standardized, automated detection algorithm would help to increase the validity of such paleopathological research. We present an image analysis application facilitating automatic detection of HL. On the basis of established age calculation methods, the individual age-at-formation can be automatically assessed with the tool presented. Additional user input to confirm the automatic result is possible via an intuitive graphical user interface. Automated detection of HL from digital radiographs of a sample of late Medieval Swiss tibiae was compared to the consensus of manual assessment by two blinded expert observers. The intra- and interobserver variability was high. The quality of the observer result improved when standardized detection criteria were defined and applied. The newly developed algorithm detected two-thirds of the HL that were identified as consensus lines between the observers. It was, however, necessary to validate the last one-third by manual editing. The lack of a large test series must be noted. The application is freely available for further testing by any interested researcher.  相似文献   

20.
Maturity imbalance between bones from different areas of the body, or between different bones in the same area or even between different centers within the same bones, are not an infrequent experience in doing radiographic assessment of skeletal maturation. Data from previous works have demonstrated tremendous variation concerning the pattern, degree, and causes of the imbalance. In view of the incomplete and contradictory knowledge concerning the mechanism producing such imbalance, it was only recommended to obtain the unweighted arithmetic mean of all the separately assessed bones as the overall skeletal age for an individual. It was hoped, however, that enthusiastic collection of new data on multiple bone assessments would soon take place which would facilitate a further recognition of the significance in skeletal maturity imbalance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号