首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Biosorption of manganese from its aqueous solution using yeast biomass Saccharomyces cerevisiae and fungal biomass Aspergillus niger was carried out. Manganese biosorption equilibration time for A. niger and S. cerevisiae were found to be 60 and 20 min, with uptakes of 19.34 and 18.95 mg/g, respectively. Biosorption increased with rise in pH, biomass, and manganese concentration. The biosorption equilibrium data fitted with the Freundlich isotherm model revealed that A. niger was a better biosorbent of manganese than S. cerevisiae.  相似文献   

2.
IN contrast to bacteriophages which are strictly host-specific, double stranded RNA fungal viruses are shown to be able to infect a different host genus and so bear some similarity to some viruses of higher plants. The technique of infecting yeasts with viruses from filamentous fungi and the morphological criterion by which infection is detected are described here.  相似文献   

3.
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.  相似文献   

4.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

5.

Background

Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol.

Results

The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1).

Conclusions

In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases.
  相似文献   

6.
The acuB gene of Aspergillus niger is an ortholog of facB in Aspergillus nidulans. Under carbon-repression conditions, facB is repressed, thereby preventing acetate metabolism when the repressing carbon source is present. Even though facB is reported to be repressed directly by CreA, it is believed that a basal level of FacB activity exists under glucose-repressive conditions. In the present study, the effect of deletion of acuB on the physiology of A. niger was assessed. Differences in organic acid and acetate production, enzyme activities and extracellular amino and non-amino organic acid production were determined under glucose-repressing and -derepressing conditions. Furthermore, consumption of alternative carbon sources (e.g. xylose, citrate, lactate and succinate) was investigated. It was shown that AcuB has pleiotropic effects on the physiology of A. niger. The results indicate that metabolic pathways that are not directly involved in acetate metabolism are influenced by acuB deletion. Clear differences in organic acid consumption and production were detected between the ∆acuB and reference strain. However, the hypothesis that AcuB is responsible for basal AcuA activity necessary for activation of acetate metabolic pathways, even during growth on glucose, could not be confirmed. The experiments demonstrated that also when acuB was deleted, no acetate was formed. Therefore, AcuB cannot be the only activator of AcuA, and another control mechanism has to be available for activating AcuA.  相似文献   

7.
A peptide antibiotic, gramicidin A, was covalently bound to cystamine self-assembled monolayers on gold surfaces. Each step of the surface functionalization was characterized by polarization modulation infrared reflection absorption spectroscopy and X-ray photoelectron spectroscopy. The antimicrobial activity of the anchored gramicidin was tested against three Gram-positive bacteria (Listeria ivanovii, Enterococcus faecalis, and Staphylococcus aureus), the Gram-negative bacterium Escherichia coli and the yeast Candida albicans. The results revealed that the adsorbed gramicidin reduced, from 60% for E. coli to 90% for C. albicans, the number of culturable microorganisms attached to the surface. The activity was proven to be persistent overtime, up to 6 months after the first use. The bacteria attached to the functionalized surfaces were permeabilized as shown by confocal microscopy. Taken together, these results indicate a bacteriostatic mode of action of the immobilized peptide. Finally, using green fluorescent protein-expressing bacteria, it was shown that the development of a bacterial biofilm was delayed on peptide-grafted surfaces for at least 24 h.  相似文献   

8.
We have cloned a gene (papA) that encodes a prolyl aminopeptidase from Aspergillus niger. Homologous genes are present in the genomes of the Eurotiales A. nidulans, A. fumigatus and Talaromyces emersonii, but the gene is not present in the genome of the yeast Saccharomyces cerevisiae. Cell extracts of strains overexpressing the gene under the control of its own promoter showed a fourfold to sixfold increase in prolyl aminopeptidase activity, but no change in phenylalanine or leucine aminopeptidase activity. The overexpressed enzyme was subsequently purified and characterised. The enzyme specifically removes N-terminal proline and hydroxyproline residues from peptides. It is the first enzyme of its kind from a eukaryotic organism that has been characterised.  相似文献   

9.
Aspergillus niger hyphae were found to grow with unliquefied potato starch under aerobic conditions, but did not grow under anaerobic conditions. The raw culture ofA. niger catalyzed saccharification of potato starch to glucose, producing approximately 12 g glucose/L/day/ The extracellular enzyme activity was decreased in proportion to incubation time, and approximately 64% of initial activity was maintained after 3 days. At 50°C,A. niger hyphae growth stopped, while the extracellular enzyme activity peaked. On the basis of theA. niger growth property and enzyme activity, we designed a serial bioreactor system composed of four different reactors. Fungal hyphae were cultivated in reactor I at 30°C, uniquefied starch was saccharified to glycose by a fungal hyphae culture in reactors II and III at 50°C, and glucose was fermented to ethanol bySaccharomyces cerevisiae in reactor IV. The total glucose produced by fungal hyphae in reactor I and saccharification in reactor II was about 42 g/L/day. Ethanol production in reactor IV was approximately 22 g/L/day, which corresponds to about 79% of the theoretical maximum produced from 55 g starch/L/day.  相似文献   

10.
11.
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained.  相似文献   

12.
In vitro colonization of hydrophilic contact lenses by Aspergillus niger was investigated. Five strains of the fungus, four polymers, two culture media and four incubation periods were considered for analysis. Only the 2700 strain colonized the lenses. The degrees of adhesion and invasion varied significantly according to the characteristics of the culture under investigation. Journal of Industrial Microbiology & Biotechnology (2002) 29, 6–9 doi:10.1038/sj.jim.7000255 Received 06 August 2001/ Accepted in revised form 23 March 2002  相似文献   

13.
Glucose oxidase (GOX) is currently used in clinical, pharmaceutical, food and chemical industries. The aim of this study was expression and characterization of Aspergillus niger glucose oxidase gene in the yeast Yarrowia lipolytica. For the first time, the GOX gene of A. niger was successfully expressed in Y. lipolytica using a mono-integrative vector containing strong hybrid promoter and secretion signal. The highest total glucose oxidase activity was 370 U/L after 7 days of cultivation. An innovative method was used to cell wall disruption in current study, and it could be recommended to use for efficiently cell wall disruption of Y. lipolytica. Optimum pH and temperature for recombinant GOX activity were 5.5 and 37 °C, respectively. A single band with a molecular weight of 80 kDa similar to the native and pure form of A. niger GOX was observed for the recombinant GOX in SDS-PAGE analysis. Y. lipolytica is a suitable and efficient eukaryotic expression system to production of recombinant GOX in compered with other yeast expression systems and could be used to production of pure form of GOX for industrial applications.  相似文献   

14.
The earlier identified gene RAD31 was mapped on the right arm of chromosome II in the region of gene MEC1 localization. Epistatic analysis demonstrated that the rad31 mutation is an allele of the MEC1 gene, which allows further designation of the rad31 mutation as mec1-212. Mutation mec1-212, similar to deletion alleles of this gene, causes sensitivity to hydroxyurea, disturbs the check-point function, and suppresses UV-induced mutagenesis. However, this mutation significantly increases the frequency of spontaneous canavanine-resistance mutations induced by disturbances in correcting errors of DNA replication and repair, which distinguishes it from all identified alleles of gene MEC1.  相似文献   

15.
To illustrate the effect of a cellulose-binding domain (CBD) on the enzymatic characteristics of non-cellulolytic exoglucanases, 10 different recombinant enzymes were constructed combining the Saccharomyces cerevisiae exoglucanases, EXG1 and SSG1, with the CBD2 from the Trichoderma reesei cellobiohydrolase, CBH2, and a linker peptide. The enzymatic activity of the recombinant enzymes increased with the CBD copy number. The recombinant enzymes, CBD2-CBD2-L-EXG1 and CBD2-CBD2-SSG1, exhibited the highest cellobiohydrolase activity (17.5 and 16.3 U mg –1 respectively) on Avicel cellulose, which is approximately 1.5- to 2-fold higher than the native enzymes. The molecular organisation of CBD in these recombinant enzymes enhanced substrate affinity, molecular flexibility and synergistic activity, contributing to their elevated action on the recalcitrant substrates as characterised by adsorption, kinetics, thermostability and scanning electron microscopic analysis.  相似文献   

16.
Cellobiohydrolase genes cbhI and cbhII were isolated from Trichoderma viride AS3.3711 and T. viride CICC 13038, respectively, using RT-PCR technique. The cbhI gene from T. viride AS3.3711 contains 1,542 nucleotides and encodes a 514-amino acid protein with a molecular weight of approximately 53.96 kDa. The cbhII gene from T. viride CICC 13038 was 1,413 bp in length encoding 471 amino acid residues with a molecular weight of approximately 49.55 kDa. The CBHI protein showed high homology with enzymes belonging to glycoside hydrolase family 7 and CBHII is a member of Glycoside hydrolase family 6. CBHI and CBHII play a role in the conversion of cellulose to glucose by cutting the disaccharide cellobiose from the non-reducing end of the cellulose polymer chain. The two cellobiohydrolase (CBHI, CBHII) genes were successfully expressed in Saccharomyces cerevisiae H158. Maximal activities of transformants Sc-cbhI and Sc-cbhII were 0.03 and 0.089 units ml−1 under galactose induction, respectively. The optimal temperatures of the recombinant enzymes (CBHI, CBHII) were 60 and 70°C, respectively. The optimal pHs of recombinant enzymes CBHI and CBHII were at pH 5.8 and 5.0, respectively.  相似文献   

17.
Liu Z  Sun Z 《Biotechnology letters》2004,26(24):1861-1865
A d -lactonohydrolase gene of about 1.1 kb was cloned from Fusarium moniliforme. The ORF sequence predicted a protein of 382 amino acids with a molecular mass of about 40 kDa. An expression plasmid carrying the gene under the control of the triose phosphate isomerase gene promotor was introduced into Saccharomyces cerevisiae, and the d -lactonohydrolase gene was successfully expressed in the recombinant strains.Revisions requested 10 September 2004; Revisions received 15 October 2004The nucleotide sequence data reported in this paper has been assigned accession number AY728018 in the GeneBank database.  相似文献   

18.
A gratuitous strain was developed by disrupting the GAL1 gene (galactokinase) of recombinant Saccharomyces cerevisiae harboring the antithrombotic hirudin gene in the chromosome under the control of the GAL10 promoter. A series of glucose-limited fed-batch cultures were carried out to examine the effects of glucose supply on hirudin expression in the gratuitous strain. Controlled feeding of glucose successfully supported both cell growth and hirudin expression in the gratuitous strain. The optimum fed-batch culture done by feeding glucose at a rate of 0.3 g h–1 produced a maximum hirudin concentration of 62.1 mg l–1, which corresponded to a 4.5-fold increase when compared with a simple batch culture done with the same strain.  相似文献   

19.
We describe the isolation of a gene (clxA) encoding calnexin from laboratory and industrial strains of Aspergillus niger. Calnexin is a chaperone, which specifically recognises monoglucosylated glycoproteins in the endoplasmic reticulum, and is thus an essential component of the process that assesses the folded state of nascent secreted glycoproteins. Manipulation of chaperones has previously been adopted in attempts to overcome some of the problems associated with the secretion of heterologous proteins from filamentous fungi. The A. niger clxA gene encodes a 562-residue protein with strong homology to the calnexin of Schizosaccharomyces pombe. The clxAgene product complements a S. pombe cnx1 mutant. Motifs associated with genes controlled via the Unfolded Protein Response (UPR) were identified by sequence homology in the promoter of clxA. Steady-state levels of clxA mRNA were elevated in a strain expressing bovine prochymosin fused to the catalytic domain of glucoamylase. The ORF is punctuated by four introns, and contains two sets of four repeated peptide motifs that are characteristic of the calnexin family, together with a putative membrane-spanning domain. Deletion studies indicate that clxA is not an essential gene in A. niger.  相似文献   

20.
In this paper we present a new method for detecting block duplications in a genome. It is more stringent than previous ones in that it requires a more rigorous definition of paralogous genes and that it requires the paralogous proteins on the two blocks to be contiguous. In addition, it provides three criterion choices: (1) the same composition (i.e., having the same paralogues in the two windows), (2) the same composition and gene order, and (3) the same composition, gene order, and gene orientation. The method is completely automated, requiring no visual inspection as in previous methods. We applied it to analyze the complete genomes of S. cerevisiae and C. elegans. In yeast we detected fewer duplicated blocks than previously reported. In C. elegans, however, we detected more block duplications than previously reported, indicating that although our method has a more stringent definition of block duplication than previous ones, it may be more sensitive in detection because it considers every possible window rather than only fixed nonoverlapping windows. Our results show that block duplication is a common phenomenon in both organisms. The patterns of block duplication in the two species are, however, markedly different. The yeast shows much more extensive block duplication than the nematode, with some chromosomes having more than 40% of the duplications derived from block duplications. Moreover, in the yeast the majority of block duplications occurred between chromosomes, while in the nematode most block duplications occurred within chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号