首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
We have labeled the primer binding domain of HIV1-RT with 5'-32P-labeled (dT)15 primer using ultraviolet light energy. The specificity of the primer cross-linking to HIV1-RT was demonstrated by competition experiments. Both synthetic and natural primers, e.g., p(dA)15, p(dC)15, and tRNA(Lys), inhibit p(dT)15 binding and cross-linking to the enzyme. The observed binding and cross-linking of the primer to the enzyme were further shown to be functionally significant by the observation that tRNA(Lys) inhibits the polymerase activity on poly(rA).(dT)15 template-primer as well as the cross-linking of p(dT)15 to the enzyme to a similar extent. At an enzyme to p(dT)15 ratio of 1:3, about 15% of the enzyme can be cross-linked to the primer. To identify the domain cross-linked to (dT)15, tryptic peptides were generated and purified by a combination of HPLC on a C-18 reverse-phase column and DEAE-Sephadex chromatography. A single peptide cross-linked to p(dT)15 was identified. This peptide corresponded to amino acid residues 288-307 in the primary sequence of HIV1-RT as judged by amino acid composition and sequence analyses. Further, Leu(289)-Thr(290) and Leu(295)-Thr(296) of HIV1-RT appear to be the probable sites of cross-linking to the primer p(dT)15.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Simian immunodeficiency virus (SIV) infection of macaques is remarkably similar to that of human immunodeficiency virus type 1 (HIV-1) in humans, and the SIV-macaque system is a good model for AIDS research. We have constructed an SIV proviral DNA clone that is deleted of 97 nucleotides (nt), i.e., construct SD, at positions (+322 to +418) immediately downstream of the primer binding site (PBS) of SIVmac239. When this construct was transfected into COS-7 cells, the resultant viral progeny were severely impaired with regard to their ability to replicate in C8166 cells. Further deletion analysis showed that a virus termed SD1, containing a deletion of 23 nt (+322 to +344), was able to replicate with wild-type kinetics, while viruses containing deletions of 21 nt (+398 to +418) (construct SD2) or 53 nt (+345 to +397) (construct SD3) displayed diminished capacity in this regard. Both the SD2 and SD3 viruses were also impaired with regard to ability to package viral RNA, while SD1 viruses were not. The SD and SD3 constructs did not revert to increased replication ability in C8166 cells over 6 months in culture. In contrast, long-term passage of the SD2 mutated virus resulted in a restoration of replication capacity, due to the appearance of four separate point mutations. Two of these substitutions were located in leader sequences of viral RNA within the PBS and the dimerization initiation site (DIS), while the other two were located within two distinct Gag proteins, i.e., CA and p6. The biological relevance of three of these point mutations was confirmed by site-directed mutagenesis studies that showed that SD2 viruses containing each of these substitutions had regained a significant degree of viral replication capacity. Thus, leader sequences downstream of the PBS, especially the U5-leader stem and the DIS stem-loop, are important for SIV replication and for packaging of the viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号