首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 10 women, external cold and heat exposures were performed both in the middle of luteal phase (L) and in the early follicular phase (F) of the menstrual cycle. Serum progesterone concentrations in L and F averaged 46.0 and 0.9 nmol X l-1, respectively. The experiments took place between 3:00 and 4:30 A.M., when the L-F core temperature difference is maximal. At neutral ambient temperature, esophageal (Tes), tympanic (Tty), rectal (Tre), and mean skin (Tsk) temperatures averaged 0.59 degrees C higher in L than in F. The thresholds for shivering, chest sweating, and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were increased in L by an average of 0.47 degrees C, related to mean body temperature [Tb(es) = 0.87Tes + 0.13 Tsk] and to Tes, Tty, Tre, or Tsk. The above-threshold chest sweat rate and cutaneous heat clearances at the thumb and forearm were also enhanced in L, when related to Tb(es) or time. The metabolic rate, arm blood flow, and heart rate at thermoneutral conditions were increased in L by 5.0%, 1.1 ml X 100 ml-1 X min-1, and 4.6 beats X min-1, respectively. The concomitant increase in threshold temperatures for all autonomic thermoregulatory responses in L supports the concept of a resetting of the set point underlying the basal body temperature elevation in L. The effects of the increased threshold temperatures are counteracted by enhanced heat loss responses.  相似文献   

2.
The effect of cold exposure on the sympathoadrenal system in primates was studied with and without ketamine anesthesia in eight adult rhesus monkeys. Each monkey was placed in a primate chair at a thermoneutral temperature (25 degrees C) for 1 h (control) followed by cold exposure (12 degrees C) for 3 h or placed in a circulating water bath (28 degrees C) to induce a decrease in core temperature (Tre) to 35 and 33 degrees C. Plasma catecholamines were analyzed by high-pressure liquid chromatography with electrochemical detection (60-65% recovery, coefficient of variation = 15%). The 3-h cold exposure was associated with a 175% increase above control levels of norepinephrine (NE) and a 100% increase in epinephrine (E). Decreases were evident in Tre (0.5 degree C), mean skin temperature (Tsk, 5.5 degrees C), and mean body temperature (Tb, 2.0 degrees C). Continuous infusion of ketamine (0.65 mg . kg-1 . min-1) resulted in no change in the plasma levels of NE and E from the control levels. Tre, Tsk, and Tb all showed greater declines with the addition of ketamine infusion to the cold exposure. Water exposure (28 degrees C) under ketamine anesthesia resulted in a drop in Tre to 33 degrees C within 1 h. Plasma levels of NE and E were unchanged from control values at Tre of 35 and 33 degrees C. The data suggest that the administration of ketamine abolished both the thermoregulatory response and the catecholamine response to acute cold exposure.  相似文献   

3.
Certain previous studies suggest, as hypothesized herein, that heat balance (i.e., when heat loss is matched by heat production) is attained before stabilization of body temperatures during cold exposure. This phenomenon is explained through a theoretical analysis of heat distribution in the body applied to an experiment involving cold water immersion. Six healthy and fit men (mean +/- SD of age = 37.5 +/- 6.5 yr, height = 1.79 +/- 0.07 m, mass = 81.8 +/- 9.5 kg, body fat = 17.3 +/- 4.2%, maximal O2 uptake = 46.9 +/- 5.5 l/min) were immersed in water ranging from 16.4 to 24.1 degrees C for up to 10 h. Core temperature (Tco) underwent an insignificant transient rise during the first hour of immersion, then declined steadily for several hours, although no subject's Tco reached 35 degrees C. Despite the continued decrease in Tco, shivering had reached a steady state of approximately 2 x resting metabolism. Heat debt peaked at 932 +/- 334 kJ after 2 h of immersion, indicating the attainment of heat balance, but unexpectedly proceeded to decline at approximately 48 kJ/h, indicating a recovery of mean body temperature. These observations were rationalized by introducing a third compartment of the body, comprising fat, connective tissue, muscle, and bone, between the core (viscera and vessels) and skin. Temperature change in this "mid region" can account for the incongruity between the body's heat debt and the changes in only the core and skin temperatures. The mid region temperature decreased by 3.7 +/- 1.1 degrees C at maximal heat debt and increased slowly thereafter. The reversal in heat debt might help explain why shivering drive failed to respond to a continued decrease in Tco, as shivering drive might be modulated by changes in body heat content.  相似文献   

4.
The present work was undertaken to examine the effect of wet suits on the pattern of heat exchange during immersion in cold water. Four Korean women divers wearing wet suits were immersed to the neck in water of critical temperature (Tcw) while resting for 3 h or exercising (2-3 met on a bicycle ergometer) for 2 h. During immersion both rectal (Tre) and skin temperatures and O2 consumption (VO2) were measured, from which heat production (M = 4.83 VO2), skin heat loss (Hsk = 0.92 M +/- heat store change based on delta Tre), and thermal insulation were calculated. The average Tcw of the subjects with wet suits was 16.5 +/- 1.2 degrees C (SE), which was 12.3 degrees C lower than that of the same subjects with swim suits (28.8 +/- 0.4 degrees C). During the 3rd h of immersion, Tre and mean skin temperatures (Tsk) averaged 37.3 +/- 0.1 and 28.0 +/- 0.5 degrees C, and skin heat loss per unit surface area 42.3 +/- 2.66 kcal X m-2 X h. The calculated body insulation [Ibody = Tre - Tsk/Hsk] and the total shell insulation [Itotal = (Tre - TW)/Hsk] were 0.23 +/- 0.02 and 0.5 +/- 0.04 degrees C X kcal-1 X m2 X h, respectively. During immersion exercise, both Itotal and Ibody declined exponentially as the exercise intensity increased. Surprisingly, the insulation due to wet suit (Isuit = Itotal - Ibody) also decreased with exercise intensity, from 0.28 degrees C X kcal-1 X m2 X h at rest to 0.12 degrees C X kcal-1 X m2 X h at exercise levels of 2-3 met.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Since human thermoregulation at rest is altered by cold exposure, it was hypothesized that physical training under cold conditions would alter thermoregulation. Three groups (n = 8) of male subjects (mean age 24.3 +/- 0.9 years) were evaluated: group T (interval training at 21 degrees C), group CT (interval training at 1 degrees C), and group C (no training, equivalent exposure to 1 degrees C). Each group was submitted, before and after 4 weeks of interval training (5 d/week), to a cold air test at rest (SCAT) (dry bulb temperature (Tdb) = 1 degrees C) for a 2-h period for evaluation of the thermoregulatory responses. During SCAT, after the training/acclimation period, group T exhibited a higher rectal temperature (Tre) (P < 0.05) without significant change in mean skin temperature (Tsk) whereas metabolic heat production (M) was higher at the beginning of the SCAT (P < 0.05). For group CT, no thermoregulatory change was observed. Group C showed a lower Tre (P < 0.05) without significant change in either Tsk or in M, suggesting the development of a hypothermic general cold adaptation. This study showed, first, that the cold thermoregulatory responses induced by an interval training differed following the climatic conditions of the training and, second, that this training performed in the cold prevented the development of a general cold adaptation.  相似文献   

6.
Nine young (20-25 years) and ten older (60-71 years) men, matched for body fatness and surface area:mass ratio, underwent cold tests in summer and winter. The cold tests consisted of a 60-min exposure, wearing only swimming trunks, to an air temperature of 17 degrees C (both seasons) and 12 degrees C (winter only). Rectal (Tre) and mean skin (Tsk) temperatures, metabolic heat production (M), systolic (BPs) and diastolic (BPd) blood pressures and heart rate (fc) were measured. During the equilibrium period (28 degrees C air temperature) there were no age-related differences in Tre, Tsk, BPs, BPd, or fc regardless of season, although M of the older men was significantly lower (P < 0.003). The decrease in Tre and Tsk (due to the marked decrease in six of the older men) and the increase in BPs and BPd were significantly greater (P < 0.004) for the older men during all the cold exposures. The rate of increase in M was significantly greater (P < 0.01) for the older group when exposed to 12 degrees C in winter and 17 degrees C in summer (due to the marked increase in four of the older men). This trend was not apparent during the 17 degrees C exposure in winter. There was no age-related difference in fc during the exposures. Significant decreases in Tre and Tsk and increases in M, BPs and BPd during the 12 degrees C exposure were observed for the older group (P < 0.003) compared to their responses during the 17 degrees C exposure in winter. In contrast, Tre, M, BPs in the young group were not affected as much by the colder environment. It was concluded that older men have more variable responses and some appear more or less responsive to mild and moderate cold air than young men.  相似文献   

7.
Restraint hypothermia has often been described, but its cause has never been clarified. We hypothesized that it might be due to a suppression of shivering thermogenesis. Thus, we restrained conscious rats in an ambient temperature of 2 degrees C while measuring rectal (Tre) and tail skin temperatures, metabolic rate (MR), and shivering activity. When rats were cold exposed but not restrained, Tre fell 1.4 +/- 0.2 degrees C (SE) during the 1st h. When these same rats were restrained, Tre fell at a rate of 6.5 +/- 0.2 degrees C/h. MR averaged 15.7 +/- 1.4 W/kg for the unrestrained rats, but it averaged only 9.0 +/- 1.1 W/kg for the restrained rats. The restrained rats showed no signs of shivering. The animals were then subjected to a restraint adaptation regimen and then reexposed to cold. Restraint now produced a fall in Tre of only 2.6 +/- 0.7 degrees C/h. The animals shivered and generated an MR of 15.8 +/- 0.9 W/kg. Naive rats became hypothermic because restraint suppressed shivering activity. However, adapted rats continued to shiver and remained normothermic. We suggest that a stressful or threatening situation, such as restraint for a naive rat, inhibits shivering and leads to hypothermia in a cold environment. This would not occur in adapted rats because restraint is no longer stressful.  相似文献   

8.
Two series of experiments were performed in physically untrained subjects. In series A (heat adaptation, HA), seven male subjects were adapted to dry heat (five consecutive days at 55 degrees C ambient air temperature (Ta) for 1 h X day-1) under resting conditions. Before and after HA, the subjects' shivering responses were determined in a cold test (Ta + 10 to 0 degrees C). In series B, eight male subjects underwent mild exercise training (five consecutive days at a heart rate, HR, of 120 b X min-1) under Ta conditions individually adjusted (Ta + 15 to +5 degrees C) to prevent both sweating and cold sensations. Before and after "sweatless training", the subjects were subjected to a combined cold and heat test. During HA the thresholds for shivering, cutaneous vasodilatation (thumb and forearm) and sweating were shifted significantly (p less than 0.05) towards lower mean body temperatures (Tb). The mean decrease in threshold Tb was 0.36 degrees C. "Sweatless training" resulted in a mean increase in work rate (at HR 120 b X min-1) and oxygen pulse of 13 and 8%, respectively. However, "sweatless training" did not change the threshold Tb for shivering or sweating. Neither HA nor "sweatless training" changed the slopes of the relationships of shivering and sweating to Tb. It is concluded that the previously reported lowering of shivering and sweating threshold Tb in long-distance runners is not due to an increased fitness level, but is essentially identical with HA. The decreased shivering threshold following HA is interpreted as "cross adaptation" produced by the stressors cold and heat.  相似文献   

9.
In six male subjects the sweating thresholds, heart rate (fc), as well as the metabolic responses to exercise of different intensities [40%, 60% and 80% maximal oxygen uptake (VO2max)], were compared at ambient temperatures (Ta) of 5 degrees C (LT) and 24 degrees C (MT). Each period of exercise was preceded by a rest period at the same temperature. In LT experiments, the subjects rested until shivering occurred and in MT experiments the rest period was made to be of exactly equivalent length. Oxygen uptake (VO2) at the end of each rest period was higher in LT than MT (P less than 0.05). During 20-min exercise at 40% VO2max performed in the cold no sweating was recorded, while at higher exercise intensities sweating occurred at similar rectal temperatures (Tre) but at lower mean skin (Tsk) and mean body temperatures (Tb) in LT than MT experiments (P less than 0.001). The exercise induced VO2 increase was greater only at the end of the light (40% VO2max) exercise in the cold in comparison with MT (P less than 0.001). Both fc and blood lactate concentration [1a]b were lower at the end of LT than MT for moderate (60% VO2max) and heavy (80% VO2max) exercises. It was concluded that the sweating threshold during exercise in the cold environment had shifted towards lower Tb and Tsk. It was also found that subjects exposed to cold possessed a potentially greater ability to exercise at moderate and high intensities than those at 24 degrees C since the increases in Tre, fc and [1a]b were lower at the lower Ta.  相似文献   

10.
The effect of low-intensity exercise in the heat on thermoregulation and certain biochemical changes in temperate and tropical subjects under poorly and well-hydrated states was examined. Two VO2max matched groups of subjects consisting of 8 Japanese (JS) and 8 Malaysians (MS) participated in this study under two conditions: poorly-hydrated (no water was given) and well-hydrated (3 mL x Kg(-1) body weight of water was provided at onset of exercise, and the 15th, 35th and 55th min of exercise). The experimental room in both countries was adjusted to a constant level (Ta: 31.6+/-0.03 degrees C, rh: 72.3+/-0.13%). Subjects spent an initial 10 min rest, 60 min of cycling at 40% VO2max and then 40 min recovery in the experimental room. Rectal temperatures (Tre) skin temperatures (Tsk), heart rate (HR), heat-activated sweat glands density (HASG), local sweat rate (M sw-back) and percent dehydration were recorded during the test. Blood samples were analysed for plasma glucose and lactate levels.The extent of dehydration was significantly higher in the combined groups of JS (1.43+/-0.08%) compared to MS (1.15+/-0.05%). During exercise M sw-back was significantly higher in JS compared to MS in the well-hydrated condition. The HASG was significantly more in JS compared to MS at rest and recovery. Tre was higher in MS during the test. Tsk was significantly higher starting at the 5th min of exercise until the end of the recovery period in MS compared to JS.In conclusion, tropical natives have lower M sw-back associated with higher Tsk and Tre during the rest, exercise and recovery periods. However, temperate natives have higher M sw-back and lower Tsk and Tre during experiments in a hot environment. This phenomenon occurs in both poorly-hydrated and well-hydrated states with low intensity exercise. The differences in M sw-back, Tsk and Tre are probably due to a setting of the core temperature at a higher level and enhancement of dry heat loss, which occurred during passive heat exposure.  相似文献   

11.
To examine the influence of muscle glycogen on the thermal responses to passive rewarming subsequent to mild hypothermia, eight subjects completed two cold-water immersions (18 degrees C), followed by 75 min of passive rewarming (24 degrees C air, resting in blanket). The experiments followed several days of different exercise-diet regimens eliciting either low (LMG; 141.0 +/- 10.5 mmol.kg.dry wt-1) or normal (NMG; 526.2 +/- 44.2 mmol.kg.dry wt-1) prewarming muscle glycogen levels. Cold-water immersion was performed for 180 min or to a rectal temperature (Tre) of 35.5 degrees C. In four subjects (group A, body fat = 20 +/- 1%), postimmersion Tre was similar to preimmersion Tre for both trials (36.73 +/- 0.18 vs. 37.26 +/- 0.18 degrees C, respectively). Passive rewarming in group A resulted in an increase in Tre of only 0.13 +/- 0.08 degrees C. Conversely, initial rewarming Tre for the other four subjects (group B, body fat = 12 +/- 1%) averaged 35.50 +/- 0.05 degrees C for both trials. Rewarming increased Tre similarly in group B during both LMG (0.76 +/- 0.25 degrees C) and NMG (0.89 +/- 0.13 degrees C). Afterdrop responses, evident only in those individuals whose body core cooled during immersion (group B), were not different between LMG and NMG. These data support the contention that Tre responses during passive rewarming are related to body insulation. Furthermore these results indicate that low muscle glycogen levels do not impair rewarming time nor alter after-drop responses during passive rewarming after mild-to-moderate hypothermia.  相似文献   

12.
The dynamics of sweating was investigated at rest in 8 men and 8 women. Electrical skin resistance (ESR), rectal temperature (Tre) and mean skin temperature (Tsk) were measured in subjects exposed to 40 degrees C environmental temperature, 30% relative air humidity, and 1 m X s-1 air flow. Sweat rate was computed from continuous measurement of the whole body weight loss. It was found that increases in Tre, Tsk and mean body temperature (Tb) were higher in women than in men by 0.16, 0.38 and 0.21 degrees C, but only the difference in delta Tb was significant (p less than 0.05). The dynamics of sweating in men and women respectively, was as follows: delay (td) 7.8 and 18.1 min (p less than 0.01), time constant (tau) 7.5 and 8.8 min (N.S.), inertia time (ti) 15.3 and 26.9 min (p less than 0.002), and total body weight loss 153 and 111 g X m-2 X h-1 (p less than 0.001). Dynamic parameters of ESR did not differ significantly between men and women. Inertia times of ESR and sweat rate correlated in men (r = 0.93, p less than 0.001), and in women (r = 0.76, p less than 0.02). In men, delta Tre correlated with inertia time of sweat rate (r = 0.81, p less than 0.01) as well as with the inertia time of ESR (r = 0.83, p less than 0.001). No relation was found between delta Tre and the dynamics of sweating in women. It is concluded that the dynamics of sweating plays a decisive role in limiting delta Tre in men under dry heat exposure. The later onset of sweating in women does not influence the rectal temperature increase significantly. In women, delta Tre is probably limited by a complex interaction of sweating, skin blood flow increase, and metabolic rate decrease.  相似文献   

13.
This study examined both the thermal and metabolic responses of individuals in cool (30 degrees C, n = 9) and cold (18 degrees C, n = 7; 20 degrees C, n = 2) water. Male volunteers were immersed up to the neck for 1 h during both seated rest (R) and leg exercise (LE). In 30 degrees C water, metabolic rate (M) remained unchanged over time during both R (115 W, 60 min) and LE (528 W, 60 min). Mean skin temperature (Tsk) declined (P less than 0.05) over 1 h during R, while Tsk was unchanged during LE. Rectal (Tre) and esophageal (Tes) temperatures decreased (P less than 0.05) during R (delta Tre, -0.5 degrees C; delta Tes, -0.3 degrees C) and increased (P less than 0.05) during LE (delta Tre, 0.4 degrees C; Tsk, 0.4 degrees C). M, Tsk, Tre, and Tes were higher (P less than 0.05) during LE compared with R. In cool water, all regional heat flows (leg, chest, and arm) were generally greater (P less than 0.05) during LE than R. In cold water, M increased (P less than 0.05) over 1 h during R but remained unchanged during LE. Tre decreased (P less than 0.05) during R (delta Tre, -0.8 degrees C) but was unchanged during LE. Tes declined (P less than 0.05) during R (delta Tes, -0.4 degrees C) but increased (P less than 0.05) during LE (delta Tes, 0.2 degrees C). M, Tre, and Tes were higher (P less than 0.05), whereas Tsk was not different during LE compared with R at 60 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The purpose of this study was to confirm the effect of head cooling on human sleep stages and body temperature. Nine healthy male volunteers with a mean age of 25 +/- 3.77 years served as subjects. The experiments were carried out under three different sets of conditions: 26 degrees C, relative humidity (RH) 50% (26/50); 32 degrees C, RH 80% (32/80); and 32 degrees C RH 80% with the use of a cooling pillow (32/80 HC). The subjects slept from 2300 hours to 0700 hours with a cotton blanket, wearing short-sleeved pyjamas and shorts on a bed, which was covered with a sheet. Electroencephalograms, electro-ouclogram, and mental electromyelograms were recorded through the night. Rectal temperature (Tre) and skin temperature (Tsk) were measured continuously. Whole-body sweat and the tympanic temperature (Tty) were measured before and after sleep. Wakefulness significantly increased at 32/80 than at 26/50; however, no significant difference was observed between 32/80 HC and 26/50. Tre and mean Tsk were higher both at 32/80 and 32/80 HC than at 26/50. The whole-body sweat loss was significantly greater and Tty in the morning was higher at 32/80 than 32/80 HC and 26/50. These results suggest that head cooling during sleep may help to decrease the whole-body sweat rate during sleep under humid heat conditions.  相似文献   

15.
Measurements of core temperature (Tc) at different sites produce on some occasions different cooling curves in cold-exposed humans, suggesting that the corresponding thermometric heat debts (HD) could be equally different when calculated by conventional methods [via the change in either Tc or mean body temperature (Tb)]. The present study also compared these thermometric HD values with the calorimetric HD obtained by partitional calorimetry (S). Nine subjects who showed similar initial but different final Tc [rectal (Tre) and auditory canal temperatures (Tac)] during nude cold exposure (2 h at 1 degrees C at rest) were used. Tc-derived HD corresponded to a heat gain of 12 +/- 21 kJ and an HD of 78 +/- 20 kJ with use of Tre and Tac, respectively, whereas the Tb-derived HD varied from 266 +/- 35 to less than or equal to 1,479 +/- 71 kJ with the use of various well-known Tb weighing coefficients. In contrast, S corresponded to 504 +/- 79 kJ, a level that could have been obtained only if the thermoneutral/cold Tb weighing coefficients had been 0.818/0.818 for Tre and 0.865/0.865 for Tac. The results demonstrate that calculation by conventional methods can markedly overestimate or underestimate HD. These differences could not be explained by the site chosen to represent Tc, inasmuch as about the same effect was observed with use of either Tre or Tac. It is concluded that the thermometric value of HD in the cold is not, at least under the present conditions, as accurate and reliable as S.  相似文献   

16.
Acclimation to cold can manifest itself in several different ways, insulative and metabolic being the most common. Bittel (J. Appl. Physiol. 62: 1627-1634, 1987) has demonstrated that heat debt, which encompasses both heat production and heat loss, can be used as a unitary index of acclimation. However, conflicting results are obtained if heat debt is calculated using a mean-weighted body temperature (Tb) vs. the change of body heat content through the integration of heat storage (S). The present study examines the determination of heat debt by three methods of calculation, the first based on Tb and the other two based on S where heat losses are measured in one and predicted in the other. Data were obtained from five healthy young males exposed to 10 degrees C air for 2 h on four different occasions. The first two exposures provided control data, while the last two were performed after 5 and 10 days, respectively, of daily immersions in 15 degrees C water to induce acclimation. The variability in response between the control exposures was as large as that among the other exposures. Although the method of calculation using Tb indicated that subjects were close to a thermal balance after 2 h of cold air exposure, this contrasted sharply with the result of the other two methods that indicated heat debt was still increasing steadily. The latter two methods are considered more accurate for transient heat debt calculation. Although cases of individual acclimation were found, these were different among the subjects, resulting in pooled responses that indicated no group acclimation by means of any of the three methods of calculation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
This study investigated the rectal (Tre), esophageal (Tes), and skin (Tsk) temperature changes in a group of trained traumatic paraplegic men pushing their own wheelchairs on a motor-driven treadmill for a prolonged period in a neutral environment. There were two experiments. The first experiment (Tre and Tsk) involved a homogeneous group (T10-T12/L3) of highly trained paraplegic men [maximum O2 uptake (VO2max) 47.5 +/- 1.8 ml.kg-1.min-1] exercising for 80 min at 60-65% VO2max.Tre and Tsk (head, arm, thigh, and calf) and heart rate (HR) were recorded throughout. O2 uptake (VO2), minute ventilation (VE), CO2 production (VCO2), and heart rate (HR) were recorded at four intervals. During experiment 1 significant changes in HR and insignificant changes in VCO2, VE, and VO2 occurred throughout prolonged exercise. Tre increased significantly from 37.1 +/- 0.1 degrees C (rest) to 37.8 +/- 0.1 degrees C after 80 min of exercise. There were only significant changes in arm Tsk. Experiment 2 involved a nonhomogeneous group (T5-T10/T11) of active paraplegics (VO2max 39.9 +/- 4.3 ml.kg-1.min-1) exercising at 60-65% VO2max for up to 45 min on the treadmill while Tre and Tes were simultaneously recorded. Tes rose significantly faster than Tre during exercise (dT/dt 20 min: Tes 0.050 +/- 0.003 degrees C/min and Tre 0.019 +/- 0.005 degrees C/min), and Tes declined significantly faster than Tre at the end of exercise. Tes was significantly higher than Tre at the end of exercise. Our results suggest that during wheelchair propulsion by paraplegics, Tes may be a better estimate of core temperature than Tre.  相似文献   

18.
The purpose of the study was to investigate the degree of subject variability in the peripheral and core temperature thresholds of the onset of shivering and sweating. Nine healthy young male subjects participated in three trials. In the first two trials, wearing only shorts, they were exposed to air temperatures of 5 degrees C and 40 degrees C until the onset of shivering and sweating, respectively. In the second experiment, subjects wore a water perfused suit that was perfused with 25 degrees C water at a rate of 600 cc/min. They exercised on an ergometer at 50% of their maximum work rate for 10-15 min. At the onset of sweating, the exercise was terminated, and they remained seated until the onset of shivering, as reflected in oxygen uptake. In the first two trials, rectal temperature (Tre) was stable, despite displacements in skin temperature (Tsk), whereas in the third trial, Tsk (measured at four sites) was almost constant (30-32 degrees C), and the thermoregulatory responses were initiated due to changes in Tre alone. The results of the first two trials established the peripheral interthreshold zone, whereas the results of the third trial established the core interthreshold zone. The results demonstrated individual variability in the peripheral and core interthreshold zones, a proportional correlation between both zones (r=0.87), and a relatively higher contribution of adiposity in both zones as compared with those of other non-thermal factors such as height, weight, body surface area, surface area-to mass ratio, and the maximum work load.  相似文献   

19.
We tested the hypothesis that local sweat rates would not display a systematic postadaptation redistribution toward the limbs after humid heat acclimation. Eleven nonadapted males were acclimated over 3 wk (16 exposures), cycling 90 min/day, 6 days/wk (40 degrees C, 60% relative humidity), using the controlled-hyperthermia acclimation technique, in which work rate was modified to achieve and maintain a target core temperature (38.5 degrees C). Local sudomotor adaptation (forehead, chest, scapula, forearm, thigh) and onset thresholds were studied during constant work intensity heat stress tests (39.8 degrees C, 59.2% relative humidity) conducted on days 1, 8, and 22 of acclimation. The mean body temperature (Tb) at which sweating commenced (threshold) was reduced on days 8 and 22 (P < 0.05), and these displacements paralleled the resting thermoneutral Tb shift, such that the Tb change to elicit sweating remained constant from days 1 to 22. Whole body sweat rate increased significantly from 0.87 +/- 0.06 l/h on day 1 to 1.09 +/- 0.08 and 1.16 +/- 0.11 l/h on days 8 and 22, respectively. However, not all skin regions exhibited equivalent relative sweat rate elevations from day 1 to day 22. The relative increase in forearm sweat rate (117 +/- 31%) exceeded that at the forehead (47 +/- 18%; P < 0.05) and thigh (42 +/- 16%; P < 0.05), while the chest sweat rate elevation (106 +/- 29%) also exceeded the thigh (P < 0.05). Two unique postacclimation observations arose from this project. First, reduced sweat thresholds appeared to be primarily related to a lower resting Tb, and more dependent on Tb change. Second, our data did not support the hypothesis of a generalized and preferential trunk-to-limb sweat redistribution after heat acclimation.  相似文献   

20.
The purpose of the present study was to investigate the effect of a range of water temperatures (Tw from 15 to 36 degrees C) on the tissue temperature profile of the resting human forearm at thermal stability. Tissue temperature (Tti) was continuously monitored by a calibrated multicouple probe during 3 h of immersion of the forearm. The probe was implanted approximately 9 cm distal from the olecranon process along the ulnar ridge. Tti was measured every 5 mm, from the longitudinal axis of the forearm (determined from computed tomography scanning) to the skin surface. Along with Tti, skin temperature (Tsk), rectal temperature (Tre), and blood flow were measured during the immersions. For all temperature conditions, the temperature profile inside the limb was linear as a function of the radial distance from the forearm axis (P less than 0.001). Temperature gradient measured in the forearm ranged from 0.2 +/- 0.1 degrees C C cm (Tw = 36 degrees C) to 2.3 +/- 0.5 degrees C cm (Tw = 15 degrees C). The maximal Tti was measured in all cases at the longitudinal axis of the forearm and was in all experimental conditions lower than Tre. On immersion at Tw less than 36 degrees C, the whole forearm can be considered to be part of the shell of the body. With these experimental data, mathematical equations were developed to predict, with an accuracy of at least 0.6 degrees C, the Tti at any depth inside the forearm at steady state during thermal stress.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号