首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The imaginal male of mosquitoes bears a combination of organs and appendages that make it morphologically distinctive. Its reproductive organs produce sperm cells, convey and extrude them, provide accessory fluids, and insure copulation and insemination. In Aedes stimulans (Walker) these organs are derived from one of the two sets of primordia provided by the embryo. The second set of primordia is capable of producing the feminine reproductive system under unusual circumstances. Testes are derived from two compact ovoid masses of cells suspended in the hemocoel of abdominal segment 6. Each enlarges slowly throughout larval instars 1–3 and elongates very rapidly late in instar 4. Specialization of the cellular mass into sperm cells proceeds forward from the caudal end early in pupal life. From the beginning, a sheath of nutritive cells or fatbody encases each gonad, and no tracheation of the mass is evident although one small trachea sends branches to the encasing fatbody late in larval life. The efferent canal from each testis is derived from a tenuous filament extending caudally from each gonad to the venter of segment 9 and a small cluster of cells in the wall of the hemocoel on the ental surface of imaginal disc 9. Early in pupal life the filaments become the tubular vasa efferentia. The caudal clusters are primordial terminal parts of the lateral tract that become vasa deferentia, seminal vesicles and associated accessory glands. The ejaculatory canal comes from a short pouch derived from the median genital plate of disc 9. All external parts except the paraprocts are products of disc 9. The bilateral buds begin to proliferate in larval instar 4 and become the basistyles, dististyles and claspettes of the gonapophyses during pupal life. The phallosome is derived from the median genital plate. Primordia of a possible feminine reproductive system and cerci remain undifferentiated and disappear early in pupal life in the normal course of events. Primordia that were recognizable include those of ovaries, parts of lateral oviducts, median genital tract and cerci.  相似文献   

2.
The placement of eyes on insect head is an important evolutionary trait. The stalk‐eyed fly, Cyrtodopsis whitei, exhibits a hypercephaly phenotype where compound eyes are located on lateral extension from the head while the antennal segments are placed inwardly on this stalk. This stalk‐eyed phenotype is characteristic of the family Diopsidae in the Diptera order and dramatically deviates from other dipterans, such as Drosophila. Like other insects, the adult eye and antenna of stalk‐eyed fly develop from a complex eye‐antennal imaginal disc. We analyzed the markers involved in proximo‐distal (PD) axis of the developing eye imaginal disc of the stalk‐eyed flies. We used homothorax (hth) and distalless (dll), two highly conserved genes as the marker for proximal and distal fate, respectively. We found that lateral extensions between eye and antennal field of the stalk‐eyed fly's eye‐antennal imaginal disc exhibit robust Hth expression. Hth marks the head specific fate in the eye‐ and proximal fate in the antenna‐disc. Thus, the proximal fate marker Hth expression evolves in the stalk‐eyed flies to generate lateral extensions for the placement of the eye on the head. Moreover, during pupal eye metamorphosis, the lateral extension folds back on itself to place the antenna inside and the adult compound eye on the distal tip. Interestingly, the compound eye in other insects does not have a prominent PD axis as observed in the stalk‐eyed fly.  相似文献   

3.
Proliferation in imaginal discs requires cell growth and is linked to patterning processes controlled by secreted cell-signalling molecules. To identify new genes involved in the control of cell proliferation we have screened a collection of P-lacW insertion mutants that result in lethality in the larval/pupal stages, and characterized a novel gene, patufet (ptuf). Inactivation of ptuf by a P element insertion in the 5′ untranslated region leads to aberrant imaginal disc morphology characterized by a reduction in mass of discs and disorganisation of disc cells where no folding or patterning can be detected. Moreover, apoptotic cells can be observed in these small and abnormal mutant discs. To examine the role of ptuf we have studied its clonal behaviour in genetic mosaics generated by mitotic recombination. The mutation causes reduced cell viability, smaller cell size and stops vein differentiation. Non-autonomous effects, such as abnormal differentiation of wild-type cells surrounding the clones, are also observed. We have cloned the ptuf gene of Drosophila melanogaster and found that it encodes a selenophosphate synthetase, which is the first identified in insects. Mutant flies transformed with the full-length cDNA show complete reversion of lethality and disc phenotype. Northern blot analysis and in situ hybridization indicate that the ptuf gene is expressed in imaginal discs as well as at different stages of development. The synthesis of selenoproteins by the selenophosphate synthetase, the role of selenoproteins in the maintenance of the oxidant/antioxidant balance of the cell and its possible implications in imaginal disc morphogenesis are discussed. Received: 22 August 1997 / Accepted: 9 September 1997  相似文献   

4.
5.
The feminine dimorph has unique structures that produce eggs, select salubrious sites for the offspring, store sperm, and void the eggs. This paper provides a time table for development of these parts in Aedes stimulans based on preparations examined at 5-hour intervals when reared at 21°C. All growths of imaginal parts proceeds independent of activities in the larval tissues. Ovaries produce the eggs in terminal follicles of the ovarioles. Besides ovarioles each ovary contains sheaths for the ovarioles, pedicels attaching them to a central canal, the calyx, ovarian sheath and muscles. Ovaries are recognizable in newly hatched larvae as caps of cells on larger masses which become part of the delivery system for eggs. Each ovary grows forward from its attachment first as a column of cells that differentiates into the several tissues by the time the insect enters pupal life. Prior accounts have considered the ovary as the whole mass of cells on each side of the hemocoel of segment 6. Only the most anterior cells recognizably distinct at the end of embryogeny are generative. The delivery system for eggs is composed of the lateral oviducts and median or common oviduct. Primordia from which the former are derived are present from the end of embryogeny and throughout larval life as two distinct parts. Two ovoid masses occur in the hemocoel of segment 6. To each of these is attached a filament extending backward to an attachment ventrally and caudally in segment 7. They are rapidly changed into definitive lateral oviducts late in pupal life. The single primordium for generating the median genital tract appears during instar 3 as a caudal ventral plate of cells in segment 8 between a pair of bilateral buds and invaginates during instar 4 to form (1) the common oviduct from a midventral pouch, (2) three spermathecae from two lateral invaginations and (3) the elaborate vaginal area. The bilateral buds form no parts of the female. The post-vaginal area or atrium with its accessory organs is derived in part from the ventral plate of segment 8 and that of segment 9. The imaginal disc in segment 9 is present at the end of embryogeny as primordial buds and ventral plate and development is delayed until early pupal life when it projects inward to form part of the atrium and pouches once to form the common opening for the duct of the accessory gland and the canal to the bursa copulatrix. The buds of this disc produce no feminine parts. During the second larval instar lateral primordia appear as a pair of shields in the anal segment. They develop slowly until pupation when they extend caudally as two flaps called “cerci” in culicid literature and this paper.  相似文献   

6.
The neural phenotype of an imaginal disc degenerate mutant l(1)d deg-3 was studied in histological sections. The mutant larvae showed severe abnormalities in the imaginal neural development. Gynandromorphs, which are composed of genetically mutant and nonmutant cells, were generated and analyzed as late larvae. The results of mosaic analysis were consistent with l(1)d deg-3 gene acting autonomously in the imaginal disc and imaginal neural cells. The optic lobe development patterns observed in the larval mosaics provided evidence for an eye disc-optic lobe interaction during the late third instar larval stage.  相似文献   

7.
Summary We estimate the number of blastoderm cells which generate the thoracic imaginal discs ofDrosophila. At hatching the wing disc is twice the size of the haltere disc, but the results suggest that both discs develop from a similar number of blastoderm cells. Two homeotic mutations, which transform the haltere into wing, affect embryonic growth but not the primordial number. All the segmental primordia may be of similar size and each may be similarly subdivided into a larger anterior, and a smaller posterior polyclone.  相似文献   

8.
 More than 50 genes have been identified in Drosophila by loss-of-function mutations that lead to overgrowth of specific tissues. Loss-of-function mutations in the lethal giant larvae, discs large, or brain tumor genes cause neoplastic overgrowth of larval brains and imaginal discs. In the present study, the growth and metastatic potential of tumors resulting from mutations in these genes were quantified. Overgrown brains and imaginal discs were transplanted into adults and β-galactosidase accumulation was used as a marker to identify donor cells. Mutations in these three genes generated tumors with similar metastatic patterns. For brain tumors, the metastatic index (a measure we defined as the fraction of hosts that acquired secondary tumors normalized for the amount of primary tumor growth) of each of the three mutants was similar. Analysis of cell proliferation in mutant brains suggests that the tumors arise from a population of several hundred cells which represent only 1–2% of the cells in third instar larval brains. For imaginal disc tumors from lethal giant larvae and brain tumor mutants, it is shown for the first time that they can be metastatic and invasive. Primary imaginal disc tumors from lethal giant larvae and brain tumor mutants formed secondary tumors in 43 and 53% of the hosts, respectively, although the secondary tumors were, in general, smaller than the secondary tumors derived from primary brain tumors. Received: 18 August 1997 / Accepted: 16 October 1997  相似文献   

9.
Summary These experiments examined whether inDrosophila immature imaginal disc tissue and tissues from embryonic stages can influence pattern regulation in a disc fragment in the same way as can mature imaginal discs. Immature imaginal discs, or the cells of whole embryos, were mixed with a test fragment (presumptive notum) from a mature wing disc. The immature tissues in each mixture were genetically marked and had been heavily irradiated (25 Kr gamma) prior to mixing to prevent growth and maturation during subsequent culture in vivo. Alteration of the regulative behavior of the test fragment (that is, regeneration of wing) thus provided an assay for the communication of positional information by the immature tissues. The results suggest that this capacity arises well before competence to metamorphose, as early as the 16th hour of embryonic development, whereas prior to 16 h, essentially no stimulation of regeneration occurred. It is suggested that the imaginal disc (or presumptive disc) cells of the embryo may have been responsible for this early stimulatory capacity.  相似文献   

10.
Summary Twenty-seven late larval or early pupal lethal mutations were isolated for the X-chromosome, some of which showed structural and/or functional deficiencies of the imaginal discs. The mutants were grouped according to the size and morphology of their discs as follows: 1. discs normal: 18 mutants. 2. discs small: 2 mutants. 3. discs degenerate: 4 mutants. 4. discless: 1 mutant. 5. discs heterogeneous: 2 mutants. Preliminary characterization of the mutants included a study of disc morphology, puparium formation and pupal molt, in vivo and in vitro evagination of the imaginal discs, autonomy of the mutation in the disc tissue (differentiation after transplantation and gynander mosaicism test). Possible relations between disc morphology and the former characteristics are discussed.  相似文献   

11.
engrailed has been postulated to be the “selector gene” involved in the establishment of the anterior-posterior compartment border in several imaginal discs and in at least the first two abdominal segments of Drosophila melanogaster. Our study of the effects of different mutant engrailed genotypes on genital disc development provided the following major results: All three terminal primordia (female and male genitalia, and analia) were affected. Different heteroallelic combinations showed different expressivities, and the three terminal primordia were differently affected by the same mutant genotype. The engrailed genotypes deleted specific elements of the adult terminalia without causing associated pattern duplications. The reduced morphology of the male engrailed genital disc was analogous to the pattern deletions observed in the adult terminalia. That the engrailed phenotype is stable was demonstrated by culturing in vivo intact and fragmented engrailed genital discs. Cell death was found in a significant number of mature male en2/en3 genital discs. The results are discussed in terms of the segmental organization of the genital disc and in terms of the “selector gene” function postulated for the engrailed locus. The interpretation that each terminal primordium has an anterior and a posterior compartment is presented and it is assumed that in the genital disc engrailed transforms posterior cells into anterior cells that do not develop, thereby causing the deficiency pattern of the engrailed phenotype.  相似文献   

12.
13.
During the larval stages of development, the imaginal disc of Drosphila Melanogaster is composed by a monolayer of epithelial cells, which undergo a strain actively produced by the cells themselves. The well-organized collective contraction produces a stress field that seemingly has a double morphogenetic role: it orchestrates the cellular organization towards the macroscopic shape emergence while simultaneously providing a local information on the organ size. Here we perform numerical simulations of such a mechanical control on morphogenesis at a continuum level, using a three-dimensional finite model that accounts for the active cell contraction. The numerical model is able to reproduce the (few) known qualitative characteristics of the tensional patterns within the imaginal disc of the fruit fly. The computed stress components slightly deviate from planarity, thus confirming the previous theoretical assumptions of a nonlinear elastic analytical model, and enforcing the hypothesis that the spatial variation of the mechanical stress may act as a size regulating signal that locally scales with the global dimension of the domain.  相似文献   

14.
To understand the roles of two well known tumour suppressor genes.l(2)gl andl(2)gd in normal imaginal disc development inDrosophila, we have initiated a study to examine effect of mulations of these genes on the expression of genes involved in the patterning of the imaginal discs. In this study we show that the expression ofwingless, theDrosophila orthologue of the mammalian oncogeneWnt, is affected in the imaginal discs ofl(2)gl 4 andl(2)gd 1 mutant individuals. In the tumourous wing imaginal discs froml(2)gl mutant larvae, the pattern ofwingless expression was progressively disrupted with an increase in the area of expression, Tumourous wing imaginal discs froml(2)gd homozygous individuals exhibited progressive broadening and extension of the wingless expressing domains. We suggest thatl(2)gl andl(2)gd might be involved in regulating post embryonic expression ofWingless.  相似文献   

15.
Summary Histochemical staining for aldehyde oxidase in mature tumorous-head eye imaginal discs of Drosophila melanogaster reveals region-specific enzyme activity that normally is not found in wild type eye discs. Confined primarily to the central portion of the mutant disc is a morphologically distinct area that can be predicted to be the only aldehyde oxidase (aldox) positive tissue in the eye disc. Prior to staining, this area can be removed mechanically from the surrounding tissue and is characterized by smooth boundaries. The separated tissue stains for aldehyde oxidase whereas the remaining disc is aldox negative as in the wild type. We presume that the aldehyde oxidase positive region subsists in the primordium of the tumorous-head abnormality and propose that the appearance of this enzyme signals a change in the state of determination in the mutant disc.  相似文献   

16.
17.
Experiments on transplantation of wing imaginal discs homozygous for a mutation in the tumor suppressor gene Merlin have demonstrated that this mutation does not induce malignant tumors. Marking of the wing disc compartment borders by specific antibodies showed the absence of essential compartment border defects in case of the Merlin mutation. Drosophila melanogaster cells mutant for Merlin have shorter cell cycle than normal cells. Proliferation of imaginal discs lasts longer in case of the mutation. It is known that beginning from some moment of development, wing veins serve as clonal restriction lines that cannot be crossed by growing mosaic clones. We showed that the Merlin mutation leads to depression of vein clonal restriction property. This means that this gene is involved not only in the control of cell proliferation, but also in the control of cell mobility and adhesion.  相似文献   

18.

Background  

The secreted morphogen Dpp plays important roles in spatial regulation of gene expression and cell cycle progression in the developing Drosophila eye. Dpp signaling is required for timely cell cycle arrest ahead of the morphogenetic furrow as a prelude to differentiation, and is also important for eye disc growth. The dpp gene is expressed at multiple locations in the eye imaginal disc, including the morphogenetic furrow that sweeps across the eye disc as differentiation initiates.  相似文献   

19.
The Drosophila wing and the dorsal thorax develop from primordia within the wing imaginal disc. Here we show that spalt major (salm) is expressed within the presumptive dorsal body wall primordium early in wing disc development to specify notum and wing hinge tissue. Upon ectopic salm expression, dorsally located second leg disc cells develop notum and wing hinge tissue instead of sternopleural tissue. Similarly, by salm over-expression within the wing disc, wing blade formation is suppressed and a mirror-image duplication of the notum and wing hinge is formed. In large dorsal clones, which lack salm and its neighboring paralogue spalt related (salr), the cells of the notum primordium do not grow; these dorsal cells are not specified as notum, hence no notum outgrowth develops. These results suggest that the zinc finger factors encoded by the salm/salr complex play important roles in defining cells of the early wing disc as dorsal body wall cells, which develop into a large dorsal body wall territory and form mesonotum and some wing hinge tissue, and in delimiting the wing primordium. We also find that salm activity is down-regulated by its own product and by that of the Pax gene eyegone.  相似文献   

20.
Developmental signalling pathways are regulated by intracellular vesicle trafficking in multicellular organisms. In our earlier communication, we have shown that mutation in Rab11 (a subfamily of the Ypt/Rab gene family) results in the activation of JNK signalling pathways in Drosophila eye. Here, we report that Rab11 regulates JNK and Raf/MAPK‐ERK signalling pathways during Drosophila wing development. Using immunofluorescence and immunohistochemical analyses, we show that overexpression of Rab11 in mutant wing imaginal disc cells triggers the induction of apoptosis and activation of JNK and ERK. Further, using a genetic approach it has been shown that Rab11 interacts with the components of these pathways during Drosophila wing development. In addition to this, in Rab11 mutant wing imaginal discs JNK activity was monitored using pucE69, a P‐lacZ enhancer‐trap line inserted in puckered (puc). A strong induction of puc in Rab11 mutant wing imaginal disc cells provided a strong support that Rab11 regulates the JNK signalling pathway during Drosophila wing development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号