首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Cytochrome c release from mitochondria to cytosol is a hallmark of apoptosis and is used to characterize the mitochondria-dependent pathway of this type of cell death. Techniques currently used to measure cytochrome c release, Western blot and fluorescence microscopy of immunolabeled cells, are time-consuming and inaccurate, and the latter is still limited by sample size. METHODS: We developed a rapid and reliable technique to detect cytochrome c release during drug-induced apoptosis, using flow cytometry. Plasma membrane of apoptotic HL-60 cells and thymocytes, treated with staurosporine and dexamethasone, respectively, were selectively permeabilized by digitonin at a low concentration. The released cytochrome c was quickly washed out from cells and that which remained in the mitochondria was immunolabeled after fixing the cells. RESULTS: The fraction of cells that retained their mitochondrial cytochrome c, or the highly fluorescent cells, gradually decreased so that after 4-8 h of drug treatment almost all the cells lost their cytochrome c and emerged as a population of low fluorescent cells. This was confirmed by parallel fluorescence microscopy of cells immunolabeled for cytochrome c. CONCLUSIONS: This technique allows the analysis of cytochrome c release from mitochondria of a large number of apoptotic cells in a short period of time and is proposed as an alternative to the methods currently used for this same purpose.  相似文献   

2.
Mitochondrial respiratory function was studied in permeabilized pig liver biopsies. The cell membrane was permeabilized mechanically in tissue samples of 2-7 mg, for application of a standardized substrate/inhibitor titration protocol in high-resolution respirometry. Specific respirometric tests demonstrated complete plasma membrane permeabilization and accessibility of substrates to intact mitochondria. High respiratory adenylate control ratios and cytochrome c conservation in the tissue preparation were comparable or even better than in isolated mitochondria. Citrate synthase and cytochrome c oxidase activities remained at 85% of controls after up to 98 h storage of liver tissue at 0 degrees C in histidine-tryptophan-ketoglutarate solution. Multiple mitochondrial defects, however, were indicated after 48 h cold storage by the decline in respiratory capacity, which was lowered to a larger extent with complex I substrates compared to respiration with substrates for complex II or IV, measured in the absence of cytochrome c. After prolonged ischemia, the adenylate control ratio was significantly reduced, and cytochrome c depletion was detected by the stimulatory effect of cytochrome c. High-resolution respirometry allows the assessment of mitochondrial function in a few milligrams of permeabilized liver tissue, without isolation of mitochondria. This provides a basis for the analysis of mitochondrial function in human liver biopsies.  相似文献   

3.
The outer mitochondrial membrane (OMM) is the last barrier between the mitochondrion and the cytoplasm. Breaches of OMM integrity result in the release of cytochrome c oxidase, triggering apoptosis. In this study, we used calibrated gold nanoparticles to probe the OMM in rat permeabilized ventricular cells and in isolated cardiac mitochondria under quasi-physiological ionic conditions and during permeability transition. Our experiments showed that under control conditions, the OMM is not permeable to 6-nm particles. However, 3-nm particles could enter the mitochondrial intermembrane space in mitochondria of permeabilized cells and isolated cardiac mitochondria. Known inhibitors of the voltage-dependent anion channel (VDAC), K?nig polyanion, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid inhibited this entrance. Thus, 3-nm particles must have entered the mitochondrial intermembrane space through the VDAC. The permeation of the isolated cardiac mitochondria OMM for 3-nm particles was approximately 20 times that in permeabilized cells, suggesting low availability of VDAC pores within the cell. Experiments with expressed green fluorescent protein showed the existence of intracellular barriers restricting the VDAC pore availability in vivo. Thus, our data showed that 1), the physical diameter of VDAC pores in cardiac mitochondria is >or=3 nm but 相似文献   

4.
Cleavage of Bid has been shown to promote apoptosis by inducing mitochondrial membrane permeabilization with the resultant release of apoptosis-inducing proteins from the intermembrane space into the cytosol. However, direct visualization of the Bid-induced release of various proteins from the highly compartmentalized intermembrane space and the changes in the mitochondrial metabolic machinery remain elusive. Using green fluorescent protein fusion proteins and immunostaining in individual permeabilized HepG2 cells, first we demonstrated that truncated Bid (15.5-kDa C-terminal fragment, tBid) evoked a rapid and essentially complete release of cytochrome c and Smac/DIABLO from every mitochondrion. To establish at a resolution of seconds the kinetics of tBid-induced cytochrome c and Smac/DIABLO release and depolarization, we monitored the mitochondrial membrane potential (DeltaPsi(m)) fluorimetrically in permeabilized cells and applied a rapid filtration method to obtain cytosolic fractions for Western blotting. We found that subnanomolar doses of tBid were sufficient to evoke cytochrome c release and mitochondrial depolarization, whereas full-length Bid was 100-fold less effective. Bcl-x(L) prevented tBid-induced cytochrome c release and depolarization. In response to 2.5 nm tBid, cytochrome c release started after a 10 s delay, displayed rapid progression, and was complete at 50-70 s. Release of Smac/DIABLO was synchronized with cytochrome c release, whereas the loss of DeltaPsi(m) lagged slightly behind cytochrome c release. Furthermore, tBid-induced cytochrome c release was insensitive to changes in substrate composition, but tBid-induced depolarization did not occur in the presence of extramitochondrial ATP supply. Thus, tBid-induced permeabilization of the outer membrane permits rapid release of cytochrome c and Smac/DIABLO from all domains of the intermembrane space. The tBid-induced loss of DeltaPsi(m) occurs after cytochrome c release and reflects impairment of oxidative metabolism.  相似文献   

5.
A direct kinetic analysis is presented of rapid proton-releasing reactions at the outer or C-side of the membrane, in ox heart and rat liver mitochondria, associated with aerobic oxidation of reduced terminal respiratory carriers in the presence of antimycin. Valinomycin plus K+ enhances the rate of cytochrome c oxidation and the rate and extent of H+ release. In the presence of valinomycin the leads to H+/e- ratio, computed on the basis of total electron flow from respiratory carriers to oxygen, varies with pH, remaining always lower than 1, and is unaffected by N-ethylmaleimide. 2-Heptyl-4-hydroxyquinoline N-oxide and 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazole, at concentrations which inhibit in the presence of antimycin the oxygen-induced reduction of b cytochromes, cause also a marked depression of the H+ release associated with aerobic oxidation of terminal respiratory carriers. Aerobic oxidation of the cytochrome system in mitochondria and of isolated b-c1 complex and cytochrome c oxidase results in scalar proton release from ionizable groups (redox Bohr effects). In mitochondria and submitochondrial particles, about 70% of the oxidoreductions of the components of the cytochrome system are linked to scalar proton transfer by ionizable groups. In isolated b-c1 complex scalar proton transfer, resulting from redox Bohr effect, amounts to 0.9H+ per Fe-S protein (190 muT). In isolated cytochrome c oxidase, Bohr protons amount to 0.8 per haem a + a3. The results presented indicate that the H+ release from mitochondria during oxidation of terminal respiratory carriers derives from residual antimycin-insensitive electron flow in the quinone-cytochrome c span and from redox Bohr effects in the b-c1 complex and cytochrome c oxidase. There is no sign of proton pumping by cytochrome oxidase during its transition from the reduced to the active 'pulsed' state and the first one or two turnovers.  相似文献   

6.
We investigated the ability of caspases (cysteine proteases with aspartic acid specificity) to induce cytochrome c release from mitochondria. When Jurkat cells were induced to undergo apoptosis by Fas receptor ligation, cytochrome c was released from mitochondria, an event that was prevented by the caspase inhibitor, zVAD-fmk (zVal-Ala-Asp-CH2F). Purified caspase-8 triggered rapid cytochrome c release from isolated mitochondria in vitro. The effect was indirect, as the presence of cytosol was required, suggesting that caspase-8 cleaves and activates a cytosolic substrate, which in turn is able to induce cytochrome c release from mitochondria. The cytochrome c releasing activity was not blocked by caspase inhibition, but was antagonized by Bcl-2 or Bcl-xL. Caspase-8 and caspase-3 cleaved Bid, a proapoptotic Bcl-2 family member, which gains cytochrome c releasing activity in response to caspase cleavage. However, caspase-6 and caspase-7 did not cleave Bid, although they initiated cytochrome c release from mitochondria in the presence of cytosol. Thus, effector caspases may cleave and activate another cytosolic substrate (other than Bid), which then promotes cytochrome c release from mitochondria. Mitochondria significantly amplified the caspase-8 initiated DEVD-specific cleavage activity. Our data suggest that cytochrome c release, initiated by the action of caspases on a cytosolic substrates, may act to amplify a caspase cascade during apoptosis.  相似文献   

7.
Mitochondrial permeability transition (MPT) and cytochrome c redistribution from mitochondria are two events associated with apoptosis. We investigated whether an MPT event obligatorily leads to cytochrome c release in vivo. We have previously shown that treatment of human osteosarcoma cells with the protonophore m-chlorophenylhydrazone (CCCP) for 6 h induces MPT and mitochondrial swelling without significant cell death. Here we demonstrate that release of cytochrome c does not occur and the cells remain viable even after 72 h of treatment with CCCP. Bax is not mobilized to mitochondria under these conditions. However, subsequent exposure of CCCP-treated cells to etoposide or staurosporine for 48 h results in rapid cell death and cytochrome c release that is accompanied by Bax association with mitochondria, demonstrating competency of these mitochondria to release cytochrome c with additional triggers. Our findings suggest that MPT is not a sufficient condition, in itself, to effect cytochrome c release.  相似文献   

8.
Caspases are cysteine proteases that play a central role in the execution of apoptosis. Recent evidence indicates that caspase-2 is activated early in response to genotoxic stress and can function as an upstream modulator of the mitochondrial apoptotic pathway. In particular, we have shown previously that fully processed caspase-2 can permeabilize the outer mitochondrial membrane and cause cytochrome c and Smac/DIABLO release from these organelles. Using permeabilized cells, isolated mitochondria, and protein-free liposomes, we now report that this effect is direct and depends neither on the presence or cleavage of other proteins nor on a specific phospholipid composition of the liposomal membrane. Interestingly, caspase-2 was also shown to disrupt the interaction of cytochrome c with anionic phospholipids, notably cardiolipin, and thereby enhance the release of the hemoprotein caused by treatment of mitochondria with digitonin or the proapoptotic protein Bax. Combined, our data suggest that caspase-2 possesses an unparalleled ability to engage the mitochondrial apoptotic pathway by permeabilizing the outer mitochondrial membrane and/or by breaching the association of cytochrome c with the inner mitochondrial membrane.  相似文献   

9.
Mitochondria isolated from ischemic cardiac tissue exhibit diminished rates of respiration and ATP synthesis. The present study was undertaken to determine whether cytochrome c release was responsible for ischemia-induced loss in mitochondrial function. Rat hearts were perfused in Langendorff fashion for 60 min (control) or for 30 min followed by 30 min of no flow ischemia. Mitochondria isolated from ischemic hearts in a buffer containing KCl exhibited depressed rates of maximum respiration and a lower cytochrome c content relative to control mitochondria. The addition of cytochrome c restored maximum rates of respiration, indicating that the release of cytochrome c is responsible for observed declines in function. However, mitochondria isolated in a mannitol/sucrose buffer exhibited no ischemia-induced loss in cytochrome c content, indicating that ischemia does not on its own cause the release of cytochrome c. Nevertheless, state 3 respiratory rates remained depressed, and cytochrome c release was enhanced when mitochondria from ischemic relative to perfused tissue were subsequently placed in a high ionic strength buffer, hypotonic solution, or detergent. Thus, events that occur during ischemia favor detachment of cytochrome c from the inner membrane increasing the pool of cytochrome c available for release. These results provide insight into the sequence of events that leads to release of cytochrome c and loss of mitochondrial respiratory activity during cardiac ischemia/reperfusion.  相似文献   

10.
Bax mediates cytochrome c release and apoptosis during neurodevelopment. Brain mitochondria that were isolated from 8-day, 17-day, and adult rats displayed decreasing levels of mitochondrial Bax. The amount of cytochrome c released from brain mitochondria by a peptide containing the BH3 cell death domain decreased with increasing age. However, approximately 60% of cytochrome c in adult brain mitochondria could be released by the BH3 peptide in the presence of exogenous human recombinant Bax. Mitochondrial Bax was downregulated in PC12S neural cells differentiated with nerve growth factor, and mitochondria isolated from these cells demonstrated decreased sensitivity to BH3-peptide-induced cytochrome c release. These results demonstrate that immature brain mitochondria and mitochondria from undifferentiated neural cells are particularly sensitive to cytochrome c release mediated by endogenous Bax and a BH3 death domain peptide. Postnatal developmental changes in mitochondrial Bax levels may contribute to the increased susceptibility of neurons to pathological apoptosis in immature animals.  相似文献   

11.
Rat liver mitochondria were loaded with cytochrome c by incubation with large amounts of [14C]apocytochrome c. After being washed they were incubated with either more apocytochrome c or cytochrome c. There was no release of labeled proteins from the mitochondria when incubated with cytochrome c. However, there was when incubated with apocytochrome c. The material released showed only one radioactive band which migrated as cytochrome c. Also no release of proteins other than cytochrome c was detected when liver mitochondria isolated from rats injected with [35S]methionine were incubated with apocytochrome c. These results suggest that the level and possibly the turnover of cytochrome c in rat liver mitochondria is regulated by the entry of apocytochrome c into mitochondria.  相似文献   

12.
Induction of apoptosis by DNA-damaging agents, such as etoposide, is known to involve the release of mitochondrial cytochrome c, although the mechanism responsible for this event is unclear. In the present study, using Jurkat T-lymphocytes, a reconstituted cell-free system, or isolated liver mitochondria, we demonstrate the ability of etoposide to induce cytochrome c release via two distinct pathways. Caspase inhibition by either benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-fmk) or benzyloxycarbonyl-Val-Asp-Val-Ala-Asp-fluoromethyl ketone (z-VDVAD-fmk) attenuates cytochrome c release triggered by a low dose of etoposide via an apparent inhibition of nuclear events involving the release of protein factor(s) that is (are) able to interact with mitochondria. In contrast, caspase inhibition has no effect on cytochrome c release induced by a higher dose of etoposide. Moreover, the higher dose of etoposide heightens the sensitivity of Ca(2+)-loaded isolated mitochondria to mitochondrial permeability transition, an effect that is completely abolished by cyclosporin A. Interestingly, cyclosporin A is ineffective at preventing similar mitochondrial damage in Jurkat cells treated with etoposide. We propose that lower doses of etoposide predominantly target the nucleus and stimulate the release of caspase-sensitive protein factor(s) that interact with mitochondria to trigger cytochrome c release, whereas higher doses of the drug impart a more direct effect on mitochondria and thus are not mitigated by caspase inhibition.  相似文献   

13.
Increased mitochondrial Ca2+ accumulation is a trigger for the release of cytochrome c from the mitochondrial intermembrane space into the cytosol where it can activate caspases and lead to apoptosis. This study tested the hypothesis that Ca2+-induced release of cytochrome c in vitro can occur by membrane permeability transition (MPT)-dependent and independent mechanisms, depending on the tissue from which mitochondria are isolated. Mitochondria were isolated from rat liver and brain and suspended at 37 degrees C in a K+-based medium containing oxidizable substrates, ATP, and Mg2+. Measurements of changes in mitochondrial volume (via light scattering and electron microscopy), membrane potential and the medium free [Ca2+] indicated that the addition of 0.3 - 3.2 micromol Ca2+ mg-1 protein induced the MPT in liver but not brain mitochondria. Under these conditions, a Ca2+ dose-dependent release of cytochrome c was observed with both types of mitochondria; however, the MPT inhibitor cyclosporin A was only capable of inhibiting this release from liver mitochondria. Therefore, the MPT is responsible for cytochrome c release from liver mitochondria, whereas an MPT-independent mechanism is responsible for release from brain mitochondria.  相似文献   

14.
The release of cytochrome c from mitochondria is a critical step during apoptosis. In order to study this process, we have used a synthetic compound, MT-21, that is able to initiate release of cytochrome c from isolated mitochondria. We demonstrate that MT-21 significantly inhibits ADP transport activity in mitochondria and reduces binding of the adenine nucleotide translocase (ANT) to a phenylarsine oxide affinity matrix. These results suggest that ANT, one of the components of the mitochondrial permeability transition (PT) pore, is the molecular target for MT-21. In agreement with this, the MT-21-induced cytochrome c release was effectively inhibited in the presence of ANT ligands, and MT-21 could dissociate ANT from a complex with a glutathione S-transferase-cyclophilin D fusion protein. Interestingly, we also found that specific inhibitors of ANT such as MT-21 and atractyloside could induce cytochrome c release without mitochondrial swelling and that this event was highly dependent on the presence of Mg(2+). These results suggest that although ANT resides in the mitochondrial inner membrane, specific ANT inhibitors can induce cytochrome c release without having an effect on inner membrane permeability. Therefore, MT-21 can be a powerful tool for studying the mechanism of PT-independent cytochrome c release from mitochondria.  相似文献   

15.
During apoptosis, the mitochondrial membrane potential (MMP) decreases, but it is not known how this relates to the apoptotic process. It was recently suggested that cytochrome c is compartmentalized in closed cristal regions and therefore, matrix remodeling is required to attain complete cytochrome c release from the mitochondria. In this work we show that, at the onset of apoptosis, changes in MMP control matrix remodeling prior to cytochrome c release. Early after growth factor withdrawal the MMP declines and the matrix condenses. Both phenomena are reversed by adding oxidizable substrates. In mitochondria isolated from healthy cells, matrix condensation can be induced by either denying oxidizable substrates or by protonophores that dissipate the membrane potential. Matrix remodeling to the condensed state results in cristal unfolding and exposes cytochrome c to the intermembrane space facilitating its release from the mitochondria during apoptosis. In contrast, when a transmembrane potential is generated due to either electron transport or a pH gradient formed by acidifying the medium, mitochondria maintain an orthodox configuration in which most cytochrome c is sequestered in the cristae and is resistant to release by agents that disrupt the mitochondrial outer membrane.  相似文献   

16.
Several mitochondrial proteins, such as cytochrome c, are directly involved in the pathway for caspase activation following induction of apoptosis. Release of mitochondrial cytochrome c early in apoptosis is rapid and almost complete. Microinjection of cytochrome c into resting cells induces apoptosis, but the amount needed approaches the total cellular content. These observations suggest that mitochondrial protein release is an all-or-nothing process inside the cell and not an amplifiable apoptotic signal. To test this hypothesis, laser micro-irradiation was used to rupture membranes of individual mitochondria within living rat neural cells. Laser micro-irradiation caused swelling, fragmentation, depolarization, and cytochrome c depletion in targeted mitochondria. These effects were explained by correlative electron microscopic analysis showing local rupture of outer and inner membranes at the site of irradiation. In all cases, there were no detectable changes in the structure, membrane potential, or cytochrome c content of neighboring, non-irradiated organelles. Furthermore, irradiation of up to 15% of the mitochondria in a cell did not induce apoptosis. The results from these laser micro-irradiation experiments prove that local release of mitochondrial proteins does not constitute an amplifiable apoptotic signal in resting neural cells.  相似文献   

17.
Anti-apoptotic Bcl-2 localizes in the membranes of mitochondria and endoplasmic reticulum (ER) and resists a broad range of apoptotic stimuli. However, the precise function of Bcl-2 in ER is still unclear. We herein examined the anti-apoptotic potencies of Bcl-2 in mitochondria and ER in vitro. The mitochondria isolated from HeLa cells, which have little or practically no Bcl-2, were apoptosis-competent. That is, membrane-bound Bax was activated and cytochrome c was released when the isolated mitochondria were incubated at 35 degrees C. Cytochrome c release from the apoptosis-competent mitochondria was suppressed by co-incubation with the mitochondria with overexpressed Bcl-2 (Bcl-2 mitochondria), suggesting that Bcl-2 anchored in one mitochondrion can suppress cytochrome c release from another mitochondrion. Similar results were obtained when microsomes with overexpressed Bcl-2 (Bcl-2 microsomes) were co-incubated with apoptosis-competent mitochondria. A quantitative titration analysis showed that Bcl-2 in the ER suppresses cytochrome c release as efficiently as that in the mitochondria. An immunoprecipitation assay showed that Bcl-2 in both mitochondria and ER binds to Bax at almost the same degree. However, in the presence of tBid, co-incubation of apoptosis-competent mitochondria with Bcl-2 microsomes, but not with Bcl-2 mitochondria, diminished the Bax-binding to Bcl-2 significantly, suggesting that Bcl-2 in ER is readily inactivated by tBid. Co-incubation assay further confirmed that Bcl-2 in the ER, but not Bcl-2 in the mitochondria, is potentially inactivated by tBid. Our quantitative in vitro studies indicate that Bcl-2 in mitochondria and ER are similarly potent in inhibiting Bax-associated apoptosis of other mitochondria, but are regulated by tBid differently.  相似文献   

18.
Mitochondria can initiate apoptosis by releasing cytochrome c after undergoing a calcium-dependent permeability transition (MPT). Although the MPT is enhanced by oxidative stress and prevented by adenine nucleotides such as adenosine 5'-diphosphate (ADP), the hypothesis has not been tested that oxidants regulate the effects of exogenous adenine nucleotides on the MPT and cytochrome c release. We found that cytochrome c release from intact rat liver mitochondria depended strictly on pore opening and not on membrane potential, and that MPT-enhancing oxidative stress also augmented cytochrome c release. At low oxidative stress, micromolar (ADP) and low adenosine 5'-triphosphate (ATP)/ADP ratio inhibited the MPT and cytochrome c release, whereas ATP or high ATP/ADP had only a slight effect. In freshly isolated mitochondria, the time to half-maximal MPT was related to the log of the ATP/ADP ratio. This function was shifted to shorter times by oxidative stress which decreased ADP protection and caused ATP to accelerate the calcium-dependent MPT. By comparison, mitochondria treated with reducing agents and those isolated from septic rats were protected from the MPT by both nucleotides. These results indicate that oxidation-sensitive site(s) in the membrane regulate the effects of adenine nucleotides on the MPT. The oxidant-based differences in the effects of ADP and ATP on the pore support the novel hypothesis that failure of the cell to consume ATP and provide adequate ADP at the adenine nucleotide transporter during oxidative stress predisposes to cytochrome c release and initiation of apoptosis.  相似文献   

19.
Apoptosis-associated mitochondrial outer membrane permeabilization assays   总被引:1,自引:0,他引:1  
Following most cell death signals, pro-apoptotic Bcl-2 members as Bax and Bak are activated and oligomerize into the mitochondria outer membrane, triggering its permeabilization and release into the cytosol of soluble apoptogenic factors such as cytochrome c involved in caspase activation. Thus, in many studies focused on apoptosis, cytochrome c release within cells is frequently examined to assess Bax/Bak activation and mitochondrial outer membrane permeabilization. In addition, cytochrome c release can also be investigated in vitro in functional mitochondria that have been isolated from cultured cells, offering a number of advantages. Here, protocols for measuring cytochrome c release from intact cells as well as from isolated mitochondria is detailed. Finally, assays to investigate Bax/Bak activation and olimerization are also presented.  相似文献   

20.
The release of cytochrome c from the mitochondrial intermembrane space can induce apoptotic cell death. Previous methods to detect cytochrome c release from mitochondria have relied upon immunoblotting, a procedure that can be limited by nonlinearity of signal, epitope masking, and impracticality for large numbers of samples. In order to circumvent these limitations, we have developed a reverse-phase high-pressure liquid chromatography method for cytochrome c detection and quantitation by taking advantage of a novel acid-induced absorbance maximum at 393 nm for cytochrome c in buffer containing 0.1% trifluoroacetic acid. Using a C4 reverse-phase analytical column, this assay had a quantitation limit of 10 ng (0.8 pmol) of cytochrome c. We demonstrated the detection and quantitation of cytochrome c from isolated mitochondria. This method of cytochrome c analysis may be useful for the study of agents that cause mitochondrial dysfunction and apoptotic cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号