首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Water-filled channels are central to the process of translocating proteins since they provide aqueous pathways through the hydrophobic environment of membranes. The Tom and Tim complexes translocate precursors across the mitochondrial outer and inner membranes, respectively, and contain channels referred to as TOM and TIM (previously called PSC and MCC). In this study, little differences were revealed from a direct comparison of the single channel properties of the TOM and TIM channels of yeast mitochondria. As they perform similar functions in translocating proteins across membranes, it is not surprising that both channels are high conductance, voltage-dependent channels that are slightly cation selective. Reconstituted TIM and TOM channel activities are not modified by deletion of the outer membrane channel VDAC, but are similarly affected by signal sequence peptides.  相似文献   

2.
A multiple conductance channel (MCC) with a peak conductance of over 1 nS is recorded from mitoplasts (mitochondria with the inner membrane exposed) using patch-clamp techniques. MCC shares many general characteristics with other intracellular megachannels, many of which are weakly selective, voltage-dependent, and calcium sensitive. A role in protein import is suggested by the transient blockade of MCC by peptides responsible for targeting mitochondrial precursor proteins. MCC is compared with the peptide-sensitive channel of the outer membrane because of similarities in targeting peptide blockade. The pharmacology and regulation of MCC by physiological effectors are reviewed and compared with the properties of the pore hypothesized to be responsible for the mitochondrial inner membrane permeability transition.  相似文献   

3.
The high-conductance channels present in the outer membranes of wild-type and porin-less yeast mitochondria have been characterized electrophysiologically after incorporation in planar bilayer membranes. The most prominent activity was ascribed to a voltage-dependent, substaterich, cationic channel which generally inactivated at potentials positive in thecis compartment, in agreement with the observations from patch-clamp experiments on porin-less mitoplasts. This channel has been identified as the so-called peptide-sensitive channel (PSC). We also observed similar channels displaying either no inactivation, or inactivation at both positive and negative potentials. These latter properties match those already described for mammalian and yeast PSC, respectively. These different behaviors are tentatively explained as arising from the presence, or lack of, peptides bound to the PSC. Very high conductances, apparently due to cooperative gating, were frequently displayed. In wild-type membranes, activity ascribable to the porin was also observed.The first two authors contributed equally to the work described in this paper.  相似文献   

4.
The patch clamp records obtained from mitoplast membranes prepared in the presence of a calcium chelator generally lack channel activity. However, multiconductance channel (MCC) activity can be induced by membrane potentials above ±60mV [Kinnallyet al., Biochem. Biophys. Res. Commun. 176, 1183–1188 (1991)]. Once activated, the MCC activity persists at all voltages. The present report characterizes the activation by voltage of multiconductance channels of rat heart inner mitochondrial membranes using patch-clamping. In some membrane patches, the size of single current transitions progressively increases with time upon application of voltage. The inhibitor cyclosporin has also been found to decrease channel conductance in steps. The results suggest that voltage-induced effects which are inhibited by cyclosporin Aare likely to involve either an increase in effective pore diameter or the assembly of low-conductance units. In activated patches, we have found at high membrane potentials (e.g., 130 mV) changes in conductance as high as 5 nS occurring in large steps (up to 2.7 nS). These were generally preceded by a smaller transition. Similar results were obtained less frequently at lower voltages. These results can be explained on the assumption that once assembled the channels may act in unison.  相似文献   

5.
We previously showed that the conductance of a mitochondrial inner membrane channel, called MCC, was specifically blocked by peptides corresponding to mitochondrial import signals. To determine if MCC plays a role in protein import, we examined the relationship between MCC and Tim23p, a component of the protein import complex of the mitochondrial inner membrane. We find that antibodies against Tim23p, previously shown to inhibit mitochondrial protein import, inhibit MCC activity. We also find that MCC activity is altered in mitochondria isolated from yeast carrying the tim23-1 mutation. In contrast to wild-type MCC, we find that the conductance of MCC from the tim23-1 mutant is not significantly blocked by mitochondrial presequence peptides. Tim23 antibodies and the tim23-1 mutation do not, however, alter the activity of PSC, a presequence-peptide sensitive channel in the mitochondrial outer membrane. Our results show that Tim23p is required for normal MCC activity and raise the possibility that precursors are translocated across the inner membrane through the pore of MCC.  相似文献   

6.
Phosphate starvation induced oligomeric proteins from the outer membranes of Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aureofaciens, and Pseudomonas chlororaphis were purified to homogeneity. The incorporation of the purified proteins into planar lipid bilayer membranes resulted in stepwise increases in membrane conductance. Single channel conductance experiments demonstrated that these proteins were all capable of forming small channels, similar to the Pseudomonas aeruginosa phospsate porin protein P, with average single channel conductances in 1 M KCl of between 233 and 252 pS. Single channel conductance measurements made in salts of varying cation or anion size indicated that the channels were uniformly anion selective. The measurement of single channel conductance as a function of KCl concentration revealed that all channels saturated at higher salt concentrations, consistent with the presence of an anion-binding site in the channel. Apparent Kd values for Cl- binding were calculated and shown to vary only twofold (180-297 mM) among all channels, including protein P channels. Phosphate competitively inhibited chloride conductance through these channels with apparent I50 values of between 0.59 and 2.5 mM phosphate at 40 mM Cl- and between 9.7 and 27 mM phosphate at 1 m Cl-. These data were consistent with the presence of a phosphate-binding site in the channels of these phosphate-regulated proteins. Furthermore, they indicated that these channels exhibit at least a 20- to 80-fold higher affinity for phosphate than for chloride.  相似文献   

7.
The beta-barrel and beta-helix formation, as in porins and gramicidin, respectively, represent two distinct mechanisms for ion channel formation by beta-sheet proteins in membranes. The design of beta-barrel proteins is difficult due to incomplete understanding of the basic principles of folding. The design of gramicidin-like beta-helix relies on an alternating pattern of L- and D-amino acid sequences. Recently we noticed that a short beta-sheet peptide (xSxG)(6), can form porin-like channels via self-association in membranes. Here, we proposed that glycine to D-alanine substitutions of the N-formyl-(xSxG)(6) would transform the porin-like channel into a gramicidin-like beta(12)-helical channel. The requirement of an N-formyl group for channel activity, impermeability to cations with a diameter >4 A, high monovalent cation selectivity, and the absence of either voltage gating or subconductance states upon D-alanine substitution support the idea of a gramicidin-like channel. Moreover, the circular dichroism spectrum in membranes is different, indicating a change in regular beta-sheet backbone structure. The conversion of a complex porin-like channel into a gramicidin-like channel provides a link between two different mechanisms of beta-sheet channel formation in membranes and emphasizes the importance of glycine and D-amino acid residues in protein folding and function and in the engineering of ion channels.  相似文献   

8.
Recent evidence suggests that the ability of ceramides to induce apoptosis is due to a direct action on mitochondria. Mitochondria are known to contain enzymes responsible for ceramide synthesis and hydrolysis and mitochondrial ceramide levels have been shown to be elevated prior to the mitochondrial phase of apoptosis. Ceramides have been reported to induce the release of intermembrane space proteins from mitochondria, which has been linked to their ability to form large channels in membranes. The aim of this study was to determine if the membrane concentration of ceramide required for the formation of protein permeable channels is within the range that is present in mitochondria during the induction phase of apoptosis. Only a very small percentage of the ceramide actually inserts into the mitochondrial membranes. The permeability of the mitochondrial outer membrane correlates directly with the level of ceramide in the membrane. Importantly, the concentration of ceramide at which significant channel formation occurs is consistent with the level of mitochondrial ceramide that occurs during the induction phase of apoptosis (4 pmol ceramide/nanomole phospholipid). Similar results were obtained with short- and long-chain ceramide. Ceramide channel formation is specific to mitochondrial membranes in that no channel formation occurs in the plasma membranes of erythrocytes even at concentrations 20 times higher than those required for channel formation in mitochondrial outer membranes. Thus, ceramide channels are good candidates for the pathway by which proapoptotic proteins are released from mitochondria during the induction phase of apoptosis.  相似文献   

9.
The channel proteins so far known are transmembrane oligomers arranged in a manner that the polar residues are lining the central ion-conducting hydrophilic pore. In the last decade, electrophysiology and molecular biology studies revealed the principal similarity in the functional properties and membrane topology within a large family of sodium-conducting channels. Amiloride-sensitive channels are expressed in the apical membranes of renal epithelia. Moreover, in different mammalian cells non-voltage-gated sodium-selective channels have been recently found. According to molecular cloning of the respective DNAs and amino acid sequence analysis, epithelial channel subunits, degenerins and some other channel proteins display a significant homology in the regions forming two presumable transmembrane domains. This paper reviews some relevant data and current opinions of the superfamily of sodium-conducting cation channels.  相似文献   

10.
Molecular organization of gap junction membrane channels   总被引:7,自引:0,他引:7  
Gap junctions regulate a variety of cell functions by creating a conduit between two apposing tissue cells. Gap junctions are unique among membrane channels. Not only do the constituent membrane channels span two cell membranes, but the intercellular channels pack into discrete cell-cell contact areas formingin vivo closely packed arrays. Gap junction membrane channels can be isolated either as two-dimensional crystals, individual intercellular channels, or individual hemichannels. The family of gap junction proteins, the connexins, create a family of gap junctions channels and structures. Each channel has distinct physiological properties but a similar overall structure. This review focuses on three aspects of gap junction structure: (1) the molecular structure of the gap junction membrane channel and hemichannel, (2) the packing of the intercellular channels into arrays, and (3) the ways that different connexins can combine into gap junction channel structures with distinct physiological properties. The physiological implications of the different structural forms are discussed.  相似文献   

11.
Plastids with four envelope membranes have evolved from red and green algae engulfed by phagotrophic protozoans. It is assumed that the Sec translocon resides in their outermost membrane, while in the two innermost membranes the Toc-Tic supercomplex is embedded. However, such a single Sec/single Toc-Tic model cannot explain the passage of proteins across the second (or periplastid) membrane which represents the endosymbiont plasmalemma. One of the most recent models postulates that this membrane contains the Toc75 channel which was relocated here from the endosymbiont plastid. Unfortunately, the precursor of this protein carries a bipartite presequence, which means that its insertion into the new membrane would require relocation and/or modification of two different processing peptidases. I suggest that these obstacles can be easily bypassed by the assumption that the mitochondrial Tim23 channel was inserted into the endosymbiont plasmalemma. In contrast to Toc75, this protein has an internal, uncleavable targeting signal and its insertion into the new membrane would require neither relocation nor modification of additional proteins. Besides, such a relocated Tim23 channel could import not only plastid, but also mitochondrial proteins. I hypothesize that from the latter proteins, initially directed to the endosymbiont mitochondrion, periplastid proteins have evolved which are now targeted to the former cytosol and/or nucleus of the eukaryotic algal endosymbiont.  相似文献   

12.
Early in mitochondria-mediated apoptosis, the mitochondrial outer membrane becomes permeable to proteins that, when released into the cytosol, initiate the execution phase of apoptosis. Proteins in the Bcl-2 family regulate this permeabilization, but the molecular composition of the mitochondrial outer membrane pore is under debate. We reported previously that at physiologically relevant levels, ceramides form stable channels in mitochondrial outer membranes capable of passing the largest proteins known to exit mitochondria during apoptosis (Siskind, L. J., Kolesnick, R. N., and Colombini, M. (2006) Mitochondrion 6, 118-125). Here we show that Bcl-2 proteins are not required for ceramide to form protein-permeable channels in mitochondrial outer membranes. However, both recombinant human Bcl-x(L) and CED-9, the Caenorhabditis elegans Bcl-2 homologue, disassemble ceramide channels in the mitochondrial outer membranes of isolated mitochondria from rat liver and yeast. Importantly, Bcl-x L and CED-9 disassemble ceramide channels in the defined system of solvent-free planar phospholipid membranes. Thus, ceramide channel disassembly likely results from direct interaction with these anti-apoptotic proteins. Mutants of Bcl-x L act on ceramide channels as expected from their ability to be anti-apoptotic. Thus, ceramide channels may be one mechanism for releasing pro-apoptotic proteins from mitochondria during the induction phase of apoptosis.  相似文献   

13.
The MIP (major intrinsic protein) proteins constitute a channel family of currently 150 members that have been identified in cell membranes of organisms ranging from bacteria to man. Among these proteins, two functionally distinct subgroups are characterized: aquaporins that allow specific water transfer and glycerol channels that are involved in glycerol and small neutral solutes transport. Since the flow of small molecules across cell membranes is vital for every living organism, the study of such proteins is of particular interest. For instance, aquaporins located in kidney cell membranes are responsible for reabsorption of 150 liters of water/day in adult human. To understand the molecular mechanisms of solute transport specificity, we analyzed mutant aquaporins in which highly conserved residues have been substituted by amino acids located at the same positions in glycerol channels. Here, we show that substitution of a tyrosine and a tryptophan by a proline and a leucine, respectively, in the sixth transmembrane helix of an aquaporin leads to a switch in the selectivity of the channel, from water to glycerol.  相似文献   

14.
Toward isolating channel proteins from Paramecium, we have explored the possibility of functionally reconstituting ion channels in an artificial system. Proteins from Paramecium cortex reconstituted with soybean azolectin retained several channels whose activities were readily registered under patch clamp. The most commonly encountered activities were three: (i) a 71-pS cation channel that opens at all voltages unless dior trivalent cations were added to close them, (ii) a 40 pS monovalent cation channel, and (iii) a large-conductance channel that prefers anions and exhibits many subconductance states. These channels survived mild detergent treatments without observable functional alterations. The possible origin of these channels from internal membranes, the possible role of 71-pS channel in internal Ca2+ release, and the prospects of their purification are discussed.This work was supported by National Institutes of Health GM 26286 and GM 22714.  相似文献   

15.
In this article we compare electrical conductance events from single channel recordings of three TRP channel proteins (TRPA1, TRPM2 and TRPM8) expressed in human embryonic kidney cells with channel events recorded on synthetic lipid membranes close to melting transitions. Ion channels from the TRP family are involved in a variety of sensory processes including thermo- and mechano-reception. Synthetic lipid membranes close to phase transitions display channel-like events that respond to stimuli related to changes in intensive thermodynamic variables such as pressure and temperature. TRP channel activity is characterized by typical patterns of current events dependent on the type of protein expressed. Synthetic lipid bilayers show a wide spectrum of electrical phenomena that are considered typical for the activity of protein ion channels. We find unitary currents, burst behavior, flickering, multistep-conductances, and spikes behavior in both preparations. Moreover, we report conductances and lifetimes for lipid channels as described for protein channels. Non-linear and asymmetric current–voltage relationships are seen in both systems. Without further knowledge of the recording conditions, no easy decision can be made whether short current traces originate from a channel protein or from a pure lipid membrane.  相似文献   

16.
Control of mitochondrial permeability by Bcl-2 family members   总被引:32,自引:0,他引:32  
Programmed cell death (apoptosis) is regulated by the Bcl-2 family of proteins. Although it remains unclear how these family members control apoptosis, they clearly have the capacity to regulate the permeability of intracellular membranes to ions and proteins. Proapoptotic members of the Bcl-2 family, especially Bax and Bid, have been extensively analyzed for the ability to form channels in membranes and to regulate preexisting channels. Anti-apoptotic members of the family tend to have the opposing effects on membrane channel formation. The molecular mechanisms of the different models for the permeabilization of membranes by the Bcl-2 family members and the regulation of Bcl-2 family member subcellular localizations are discussed.  相似文献   

17.
Mitochondrial biogenesis requires the import of hundreds of different proteins from the cytosol. Protein import into mitochondria is a multistep pathway that includes recognition of precursor proteins by machinery both in the cytoplasm and on the mitochondrial surface, translocation of the precursor across one or both mitochondrial membranes, and folding of the protein after its import into the organelle. Over the past several years, many components of the import machinery have been identified using both biochemical and genetic methods. Recently, significant progress has been made determining the function of some of these import proteins. One purpose of this minireview is to summarize our current understanding of the import pathway, and to introduce the topics of the minireviews that will follow. The other goal of this minireview is to discuss recent findings suggesting that proteins are translocated across both the mitochondrial inner and outer membranes through aqueous channels.  相似文献   

18.
The 49 human members of the ATP-binding cassette (ABC) family of proteins are involved in a wide range of activities such as active transport of compounds across membranes, extraction of compounds out of membranes, functioning as ion channels, or regulators of channel activity. Mutations and/or overexpression of many of the proteins can have adverse effects on health. A goal in the study of ABC proteins is to understand their mechanisms of action. This review will focus on the mutational approaches that have been used to study the structure and mechanisms of some ABC proteins.  相似文献   

19.
Parchorin, p64 and the related chloride intracellular channel (CLIC) proteins are widely expressed in multicellular organisms and have emerged as candidates for novel, auto-inserting, self-assembling intracellular anion channels involved in a wide variety of fundamental cellular events including regulated secretion, cell division and apoptosis. Although the mammalian phosphoproteins p64 and parchorin (49 and 65K, respectively) have only been indirectly implicated in anion channel activity, two CLIC proteins (CLIC1 and CLIC4, 27 and 29K, respectively) appear to be essential molecular components of anion channels, and CLIC1 can form anion channels in planar lipid bilayers in the absence of other cellular proteins. However, these putative ion channel proteins are controversial because they exist in both soluble and membrane forms, with at least one transmembrane domain. Even more surprisingly, soluble CLICs share the same glutaredoxin fold as soluble omega class glutathione-S-transferases. Working out how these ubiquitous, soluble proteins unfold, insert into membranes and then refold to form integral membrane proteins, and how cells control this potentially dangerous process and make use of the associated ion channels, are challenging prospects. Critical to this future work is the need for better characterization of membrane topology, careful functional analysis of reconstituted and native channels, including their conductances and selectivities, and detailed structure/function studies including targeted mutagenesis to investigate the structure of the putative pore, the role of protein phosphorylation and the role of conserved cysteine residues.  相似文献   

20.
Protein import into mitochondria is inhibited by protons (IC(50) pH 6.5). The channels of the import machinery were examined to further investigate this pH dependence. TOM and TIM23 are the protein translocation channels of the mitochondrial outer and inner membranes, respectively, and their single channel behaviors at various pHs were determined using patch-clamp techniques. While not identical, increasing H(+) concentration decreases the open probability of both TIM23 and TOM channels. The pattern of the pH dependences of protein import and channel properties suggests TIM23 open probability can limit import of nuclear-encoded proteins into the matrix of yeast mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号