首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
初始 T 细胞会进行代谢重编码,进而满足分化为效应性 T 细胞后,所增加的对能量及生物合成的需要。但是营养物质的利用对 T 细胞代谢及功能的具体调控机制目前尚不清楚。本文作者证明了在营养物质利用改变的情况下,效应性 T 细胞代谢的变化。激活的 T 细胞具有葡萄糖敏感的代谢调定点,受能量感受器 AMPK 调控,通过调节 mRNA 翻译以及谷氨酰胺依赖的线粒体代谢维持 T 细胞生物能量合成和存活。T 细胞缺失 AMPKα1后,离体葡萄糖饥饿和在体病理状态下都表现出线粒体生物能量合成减少和 ATP 降低的现象。最后,作者证明 AMPKα1是 Th1和 Th17分化,以及在体初始 T 细胞对病原微生物反应所必须的。本文提示 AMPK 依赖的代谢平衡调控可能作为干预 T 细胞介导的适应性免疫的关键点。  相似文献   

2.
5’单磷酸腺苷活化蛋白激酶(AMP—activated protein kinase,AMPK)是细胞的能量感受器,调节细胞能量代谢,在正常细胞和癌细胞中均发挥重要的生物功能,它的激活有助于纠正代谢紊乱,使细胞代谢趋向生理平衡。在细胞应急反应中,细胞感受到能量危机,ATP浓度下降,AMP浓度上升,细胞内AMP/ATP比例上升,AMPK被激活:而在病理状态下,如代谢综合征、肿瘤等,常伴随能量代谢紊乱和AMPK激活抑制,因此,AMPK被视为治疗代谢性疾病与肿瘤的潜在作用靶点。然而,AMPK对能量代谢的调节与线粒体的功能密不可分,线粒体作为细胞的能量工厂,在健康与疾病中也发挥着重要的作用。越来越多的研究表明,线粒体能影响AMPK的活性,同时AMPK也通过多方面对线粒体进行调节,线粒体相关疾病与AMPK的调节有着密切的关系。该文主要针对AMPK是如何对线粒体的合成、线粒体自噬、内源性凋亡及线粒体相关疾病等方面进行综述。  相似文献   

3.
细胞正常代谢过程需要持续的能量供给,而线粒体是细胞内氧化磷酸化和合成ATP的主要场所.m TOR作为细胞营养感应和能量调节因子,调控细胞的新陈代谢以及细胞周期进程和细胞生长.本文综述了m TOR对细胞线粒体功能的调控机制,m TOR与AMPK在细胞内交互调控能量平衡以及m TOR整合氨基酸和能量感应通路,以期为营养学或药理学中对癌症以及肥胖和糖尿病等代谢性疾病的干预和治疗提供指导.  相似文献   

4.
<正>CD4T细胞激活后会增殖分化为效应性T细胞和调节性T细胞,进而介导免疫反应的发生。在离体状态下,不同亚型的T细胞,其代谢方式对糖酵解和氧化磷酸化的侧重不同,对于T细胞葡萄糖摄取和代谢的在体调控机制目前尚不清楚。尽管在T细胞上有诸多葡萄糖转运体的表达,但是GLUT1缺失选择性损伤胸腺细胞和效应性T细胞的代谢和功能。而静息T细胞  相似文献   

5.
mTOR是细胞生长和增殖的中枢调控因子。mTOR形成2个不同的复合物mTORC1和mTORC2。mTORC1受多种信号调节,如生长因子、氨基酸和细胞能量,同时,mTORC1调节许多重要的细胞过程,包括翻译、转录和自噬。AMPK作为一种关键的生理能量传感器,是细胞和有机体能量平衡的主要调节因子,协调多种代谢途径,平衡能量的供应和需求,最终调节细胞和器官的生长。能量代谢平衡调控是由多个与之相关的信号通路所介导,其中AMPK/mTOR信号通路在细胞内共同构成一个合成代谢和分解代谢过程的开关。此外,AMPK/mTOR信号通路还是一个自噬的重要调控途径。本文着重于目前对AMPK和mTOR信号传导之间关系的了解,讨论了AMPK/mTOR在细胞和有机体能量稳态中的作用。  相似文献   

6.
AMPK在机体糖脂代谢中的作用   总被引:1,自引:0,他引:1  
AMP激活的蛋白激酶(AMPK)是一种广泛参与调节细胞代谢的激酶,被称为"能量感受器".一旦胞浆中AMP/ATP比例升高,或其它因素激活AMPK时,AMPK可增强葡萄糖摄取和利用,以及脂肪酸氧化,产生更多能量;同时抑制葡萄糖异生、脂质合成及糖原合成等通路,减少能量消耗,从而使细胞能量代谢保持平衡.AMPK参与调节包括胰岛β细胞、肝脏、骨骼肌和脂肪在内的多种外周组织的糖脂代谢过程.本文旨在总结并讨论AMPK在机体主要糖脂代谢器官中的作用,并重点分析其在治疗胰岛素抵抗和2型糖尿病中的潜在作用.  相似文献   

7.
线粒体是哺乳动物细胞内重要细胞器,通过生物合成、分裂/融合及线粒体自噬过程之间的平衡来维持线粒体质量,其功能异常将导致多种疾病的发生。腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是感受细胞能量变化的关键分子,细胞能量胁迫条件下激活AMPK调控了线粒体的功能,并影响细胞能量代谢和机体的健康,提示AMPK是调控线粒体质量的重要因子。基于此,该文综述了AMPK的结构和激活因素,围绕线粒体生物合成、分裂/融合的动力学和自噬讨论AMPK对哺乳动物细胞线粒体质量的调控作用,为通过激活AMPK而调控线粒体质量,从而为维持机体健康、降低疾病发生提供理论依据。  相似文献   

8.
非增殖细胞将葡萄糖代谢为丙酮酸,进而进入线粒体的三羧酸循环,通过氧化磷酸化产生还原当量和ATP。然而,增殖细胞如激活的T细胞和癌细胞,它们进行糖酵解,在胞浆中将丙酮酸代谢为乳酸,有充足的氧气可以进行氧化磷酸化(OX-PHOS)。这一现象被称为Warburg效应。显然,后者在提供能量方面效率不如前者,提示这一过程可能有其他功能。之前有学者认为有氧糖酵解在增殖产生子细胞营养物质生物合成的过程中是必需的。但是氧化磷酸化转变为有氧糖酵解是T细胞激活而不是增殖的标志,所以作者希望探索有氧糖酵解对T细胞是否有增殖以外其他方面的功能。他们的研究成果发表在2013年6月6日在线出版的《细胞》(cell)杂志上。  相似文献   

9.
作为专性的细胞内寄生物,病毒没有独立代谢的能力,因此完全依赖于宿主细胞的代谢机制。病毒利用宿主细胞代谢网络提供的能量和生物合成前体物质来驱动其复制、装配和释放。因此,病毒挟持宿主细胞代谢以实现自身的复制和增殖。此外,病毒还可以通过编码辅助代谢基因(auxiliary metabolic genes,AMGs)调控宿主的细胞代谢,影响碳、氮、磷、硫循环,参与微生物驱动的生物地球化学循环。本文主要从细胞葡萄糖代谢、谷氨酰胺代谢、脂肪酸代谢、病毒AMGs调控宿主代谢影响生物地球化学循环4个方面总结病毒感染对宿主核心代谢途径影响的研究,以期为深入理解病毒-宿主相互作用提供参考,也将为通过代谢干预治疗病毒性疾病提供一定的理论依据。  相似文献   

10.
单磷酸腺苷活化蛋白激酶(AMP-activated potein kinase,AMPK)作为一种细胞能量调节器,当细胞经历代谢应激反应时,伴随着细胞内AMP水平或AMP与ATP的比例升高,AMPK被AMP激活,其活化的结果导致脂肪酸氧化的增加以产生更多ATP;同时,抑制ATP消耗,综合效应是帮助细胞度过急性损伤,暂时保障细胞的存活。因为一些治疗2型糖尿病的药物通过激活AMPK而发挥作用,故AMPK被认为是各种潜在的和有效的抗糖尿病药物的靶效应器。5-氨基-4-氨甲酰咪唑核苷(5-amino-4-imidazolecarboxamide riboside,AICAR),进入细胞后被磷酸化变成ZMP,后者类似AMP也能够激活AMPK。因此,我们采用AICAR激活AMPK,观察活化的AMPK对脂肪细胞能量代谢及胰岛素信号途径的作用。结果显示,脂肪细胞中的AMPK被激活后,丙酰辅酶A(malonyl-CoA,一种脂肪酸氧化作用的抑制剂及脂肪酸合成的前体中间产物)浓度下降80%;在已分化的3T3-F442a脂肪细胞中,AICAR通过激活AMPK,增强胰岛素对Akt/PKB的激活和GSK3的磷酸化。相反,在AICAR预...  相似文献   

11.
病毒挟持宿主细胞代谢以实现自身的复制和增殖,糖类作为宿主细胞最主要能量来源及大分子物质合成重要碳源,在病毒增殖过程中其代谢受到严密调控。本文从病毒感染影响葡萄糖转运、糖代谢(糖酵解、磷酸戊糖途径、糖异生)以及胰岛素信号通路等3个方面概述病毒感染影响宿主细胞葡萄糖代谢研究进展,以期为病毒影响细胞葡萄糖代谢研究提供参考。  相似文献   

12.
髓源性抑制细胞(myeloid-derived suppressor cells, MDSCs)作为免疫调节细胞,在肿瘤发生和发展中起重要作用。糖代谢参与MDSCs功能的调节,但是,对于肿瘤进程中MDSCs代谢水平的变化,相关报道甚少。基于此,本研究利用小鼠肿瘤模型,采用流式细胞术先后分析肿瘤发生中MDSCs的丰度、周期及线粒体质量,利用ELISA试剂盒检测MDSCs乙酰辅酶A的含量,并在2-脱氧-D-葡萄糖(2-deoxy-D-glucose, 2-DG)改变糖代谢水平之后检测线粒体质量和细胞凋亡。结果发现:肿瘤发生中MDSCs的丰度明显增加,进入分裂期的细胞数增多;肿瘤状态下MDSCs乙酰辅酶A的含量增加,线粒体质量显著增加; 2-DG处理后,肿瘤条件下MDSCs的线粒体质量恢复至正常水平且细胞凋亡减少。以上结果表明,在肿瘤发生过程中, MDSCs主要依赖氧化磷酸化代谢获取能量,改变其糖代谢水平可能导致细胞功能变化。  相似文献   

13.
细胞凋亡是一种程序化的细胞死亡方式,其信号传导通路分为外源性和内源性两条主要途径,线粒体在内源性细胞凋亡途径中扮演着重要的角色。研究表明,运动可通过调节线粒体介导骨骼肌细胞凋亡的进程,而运动调节线粒体介导骨骼肌细胞凋亡信号通路影响机体细胞生物进程的机制仍有待研究。该文主要阐述了线粒体介导细胞凋亡信号传导通路及运动对其的调控作用机制,旨在为线粒体相关代谢性疾病的防治提供运动干预理论基础。  相似文献   

14.
聚球藻7942混养培养中碳代谢与能量利用   总被引:1,自引:0,他引:1  
为了考察聚球藻7942在混养条件下的能量利用效率,分别以葡萄糖和乙酸为碳源开展了聚球藻7942的混养培养研究,并在此基础上利用代谢通量分析方法对聚球藻7942混养条件下的碳代谢和能量利用进行了探讨。结果表明:葡萄糖和乙酸均能促进藻细胞生长,且乙酸促进藻细胞生长的作用更为明显;葡萄糖利用可明显增加藻细胞糖酵解途径中碳代谢流量,而乙酸利用则导致糖酵解途径中碳代谢流量减小,两种有机碳源均增加了柠檬酸循环中碳代谢流量;有机碳源导致藻细胞光化学效率下降,而葡萄糖较之乙酸降低藻细胞光化学效率更为明显。虽然混养条件下光能的贡献率要小于光自养,但基于能量的细胞得率和能量转换率均高于光自养,光自养和以葡萄糖、乙酸为碳源的混养中基于ATP生成的能量转换效率分别为6.81%、7.43%和8.77%。  相似文献   

15.
线粒体在真核细胞多种生物学过程中扮演重要角色,如能量产生、钙平衡、细胞内物质代谢、活性氧产生、细胞信号传导和凋亡等。线粒体的高度动态性,如生物发生、动态融合、分裂和退化等代谢特征与细胞种类、组织的需求密切相关。干细胞是一类具有自我更新和多向分化潜能的细胞。目前研究表明,线粒体的代谢与干细胞发育、命运决定紧密相关。本文综述干细胞干性维持及定向分化过程中,线粒体代谢改变与线粒体形态、结构和功能变化。  相似文献   

16.
导言     
线粒体是细胞内具有双层膜结构和独立基因组DNA的重要细胞器,在细胞生命活动中发挥着至关重要的作用。一方面它们是真核细胞的主要能量工厂,通过有氧代谢产生ATP,为细胞生命活动提供能量;另一方面,线粒体是细胞内活性氧产生中心,同时也是细胞内主要钙库之一,调节细胞内钙信号和细胞生长活动。更为重要的是,线粒体还是细胞凋亡和衰老的调控中心。在细胞凋亡过程中,线粒体释放促凋亡因子(如细胞色素C),对细胞内凋亡信号进行整合和放大。不言而喻,线粒体在细胞生长、衰老和凋亡等生理、病理过程中扮演着重要的角色。  相似文献   

17.
目的探讨microRNA-122在代谢中的作用机制。方法首先通过生物信息学预测和双荧光素酶报告基因实验去验证14个代谢相关的microRNA-122靶基因,接着分别利用瞬时转染microRNA-122前体的293A细胞、HeLa细胞和HepG2细胞去检测维持线粒体形态功能的3种标志蛋白Immt、AIF、Cox IV的含量以及通过NRF-1/2及ERR-α途径直接调控线粒体生物生成的PGC-1α的表达,并同时采用线粒体DNA定量实验和活体细胞线粒体损伤/氧化(NAO)荧光测定实验检测这些相应的细胞稳定克隆中线粒体的拷贝数。结果发现其中一些预测的线粒体生物发生相关的靶基因能被microRNA-122显著影响,并且在过表达了microRNA-122前体的不同种类的细胞中Immt、AIF和Cox IV的蛋白水平,PGC-1α的RNA水平和线粒体的拷贝数都呈现较为显著的下降。结论 mi-croRNA-122可通过调节线粒体的生物发生来影响代谢。  相似文献   

18.
果糖摄入量的增加与肥胖及非酒精性脂肪肝的严重程度密切相关。机体的果糖代谢在很多方面均与葡萄糖代谢不同。首先,果糖可促进食物摄取、减慢静息状态能量代谢。其次,在不增加能量摄入的条件下,果糖可绕过糖酵解途径中受细胞能量状态调控的关键限速步骤,生成过量的乙酰辅酶A,进入脂肪从头合成途径合成脂肪。但最重要的不同是,果糖在细胞内代谢时可引起快速而不可逆的ATP消耗和嘌呤核苷酸转换,并最终诱导尿酸生成。果糖诱导的尿酸生成可减少脂肪酸氧化,尤其是可通过诱导线粒体氧化应激激活脂肪合成途径,导致肥胖和内脏脂肪蓄积。因此,果糖的特殊代谢效应可能在肥胖和内脏脂肪蓄积中扮演了重要角色,果糖摄入量增加可能是肥胖及其相关代谢性疾病的重要原因。  相似文献   

19.
线粒体是真核生物细胞内重要的细胞器,主要功能是通过氧化磷酸化作用为细胞生命活动提供能量,并与细胞的生长、发育及衰老等重要生物过程密切相关。许多研究表明,线粒体蛋白质的磷酸化在调控氧化代谢方面发挥了重要作用,而且环腺苷一磷酸(cyclic adenosine monophosphate,c AMP)依赖的蛋白激酶A(protein kinase A,PKA)信号通路参与了该过程的调控,但c AMP/PKA信号通路在调控线粒体代谢方面的作用一直存在争议。因此,该文综述了线粒体内c AMP的来源、线粒体c AMP信号系统及对c AMP对线粒体功能的调控,旨在为全面了解c AMP/PKA信号通路在调控线粒体功能方面的作用提供具体参考。  相似文献   

20.
低氧暴露激活低氧诱导因子(hypoxia inducible factors, HIFs),从而上调其靶基因的表达,包括糖代谢相关蛋白如葡萄糖转运蛋白(glucose transporters, GLUTs)和糖酵解相关酶如乳酸脱氢酶A (lactate dehydrogenase A, LDHA)、醛缩酶A (aldolase A, ALDA)等基因,因此HIFs参与葡萄糖氧化分解供能,在介导机体低氧应答过程及减控体重中起重要作用。运动训练可激活过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors, PPARs),其参与调控脂肪酸代谢、胰岛素敏感性及机体能量平衡,对于减控体重具有积极作用;另外,低氧暴露或者是运动训练均可激活细胞内能量感受器AMP激活的蛋白激酶(5’-AMP activated protein kinase, AMPK),促进葡萄糖和脂肪酸氧化进程,促进肥胖机体减控体重。研究表明,相比于单纯低氧暴露或运动训练,低氧训练的双重刺激更有利于减控体重。低氧训练激活HIFs、PPARs及AMPK,这三种因子作为糖脂代谢的关键调控因子,是否在低氧训练减控体重过程中存在叠加效应?本文结合前人研究,综述HIFs、PPARs及AMPK三者在低氧训练下的相互作用,以及以AMPK-HIFs轴和AMPK-PPARs轴为核心的低氧训练减控体重的可能机制,为低氧训练应用于减控体重实践提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号