首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki = 0.06 μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs.  相似文献   

2.
A-type resistance towards “last-line” glycopeptide antibiotic vancomycin in the leading hospital acquired infectious agent, the enterococci, is the most common in the UK. Resistance is regulated by the VanRASA two-component system, comprising the histidine sensor kinase VanSA and the partner response regulator VanRA. The nature of the activating ligand for VanSA has not been identified, therefore this work sought to identify and characterise ligand(s) for VanSA. In vitro approaches were used to screen the structural and activity effects of a range of potential ligands with purified VanSA protein. Of the screened ligands (glycopeptide antibiotics vancomycin and teicoplanin, and peptidoglycan components N-acetylmuramic acid, D-Ala-D-Ala and Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide antibiotics vancomycin and teicoplanin were found to bind VanSA with different affinities (vancomycin 70 μM; teicoplanin 30 and 170 μM), and were proposed to bind via exposed aromatic residues tryptophan and tyrosine. Furthermore, binding of the antibiotics induced quicker, longer-lived phosphorylation states for VanSA, proposing them as activators of type A vancomycin resistance in the enterococci.  相似文献   

3.
The adenosine A2A receptor is considered to be an important target for the development of new therapies for Parkinson’s disease. Several antagonists of the A2A receptor have entered clinical trials for this purpose and many research groups have initiated programs to develop A2A receptor antagonists. Most A2A receptor antagonists belong to two different chemical classes, the xanthine derivatives and the amino-substituted heterocyclic compounds. In an attempt to discover high affinity A2A receptor antagonists and to further explore the structure–activity relationships (SARs) of A2A antagonism by the xanthine class of compounds, this study examines the A2A antagonistic properties of series of (E)-8-styrylxanthines, 8-(phenoxymethyl)xanthines and 8-(3-phenylpropyl)xanthines. The results document that among these series, the (E)-8-styrylxanthines have the highest binding affinities with the most potent homologue, (E)-1,3-diethyl-7-methyl-8-[(3-trifluoromethyl)styryl]xanthine, exhibiting a Ki value of 11.9 nM. This compound was also effective in reversing haloperidol-induced catalepsy in rats, providing evidence that it is in fact an A2A receptor antagonist. The importance of substitution at C8 with the styryl moiety was demonstrated by the finding that none of the 8-(phenoxymethyl)xanthines and 8-(3-phenylpropyl)xanthines exhibited high binding affinities for the A2A receptor.  相似文献   

4.
When the only solute present is a weak acid, HA, which penetrates as molecules only into a living cell according to a curve of the first order and eventually reaches a true equilibrium we may regard the rate of increase of molecules inside as See PDF for Equation where PM is the permeability of the protoplasm to molecules, Mo, denotes the external and Mi the internal concentration of molecules, Ai denotes the internal concentration of the anion A- and See PDF for Equation (It is assumed that the activity coefficients equal 1.) Putting PMFM = VM, the apparent velocity constant of the process, we have See PDF for Equation where e denotes the concentration at equilibrium. Then See PDF for Equation where t is time. The corresponding equation when ions alone enter is See PDF for Equation. where K is the dissociation constant of HA, PA is the permeability of the protoplasm to the ion pair H+ + A-, and Aie denotes the internal concentration of Ai at equilibrium. Putting PAKFM = VA, the apparent velocity constant of the process, we have See PDF for Equation and See PDF for Equation When both ions and molecules of HA enter together we have See PDF for Equation where Si = Mi + Ai and Sie is the value of Si at equilibrium. Then See PDF for Equation VM, VA, and VMA depend on FM and hence on the internal pH value but are independent of the external pH value except as it affects the internal pH value. When the ion pair Na+ + A- penetrates and Nai = BAi, we have See PDF for Equation and See PDF for Equation where P NaA is the permeability of the protoplasm to the ion pair Na+ + A-, Nao and Nai are the external and internal concentrations of Na+, See PDF for Equation, and V Na is the apparent velocity constant of the process. Equations are also given for the penetration of: (1) molecules of HA and the ion pair Na+ + A-, (2) the ion pairs H+ + A- and Na+ + A-, (3) molecules of HA and the ion pairs Na+ + A- and H+ + A-. (4) The penetration of molecules of HA together with those of a weak base ZOH. (5) Exchange of ions of the same sign. When a weak electrolyte HA is the only solute present we cannot decide whether molecules alone or molecules and ions enter by comparing the velocity constants at different pH values, since in both cases they will behave alike, remaining constant if FM is constant and falling off with increase of external pH value if FM falls off. But if a salt (e.g., NaA) is the only substance penetrating the velocity constant will increase with increase of external pH value: if molecules of HA and the ions of a salt NaA. penetrate together the velocity constant may increase or decrease while the internal pH value rises. The initial rate See PDF for Equation (i.e., the rate when Mi = 0 and Ai = 0) falls off with increase of external pH value if HA alone is present and penetrates as molecules or as ions (or in both forms). But if a salt (e.g., NaA) penetrates the initial rate may in some cases decrease and then increase as the external pH value increases. At equilibrium the value of Mi equals that of Mo (no matter whether molecules alone penetrate, or ions alone, or both together). If the total external concentration (So = Mo + Ao) be kept constant a decrease in the external pH value will increase the value of Mo and make a corresponding increase in the rate of entrance and in the value at equilibrium no matter whether molecules alone penetrate, or ions alone, or both together. What is here said of weak acids holds with suitable modifications for weak bases and for amphoteric electrolytes and may also be applied to strong electrolytes.  相似文献   

5.
A new series of 32 pyrimido- and 5 tetrahydropyrazino[2,1-f]purinediones was obtained and evaluated for their adenosine receptors (ARs) affinities. The 1,3-dibutyl derivative of 9-(4-(2-(dimethylamino)ethoxy)phenyl)-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione was found to be the most potent A1 AR antagonist of the present series, showing selectivity over the other AR subtypes. The structure–activity for the obtained purinediones was established. Docking experiments of the investigated library to homology models of the human and rat A1 and A2A ARs allowed to compare the expected binding modes for selected compounds. The detailed analysis of binding cavities within individual AR subtypes indicated small but significant structural variations that may underlie the observed differences in binding affinities of purinediones at particular subtypes and species.  相似文献   

6.
A series of benzoxazole/benzothiazole-2,3-dihydrobenzo[b][1,4]dioxine derivatives (5a5d and 8a8j) was synthesized. Compounds were evaluated for binding affinities at the 5-HT1A and 5-HT2A receptors. Antidepressant activities of the compounds were screened using the forced swimming test (FST) and the tail suspension test (TST). The results indicated that the compounds exhibited high affinities for the 5-HT1A and 5-HT2A receptors and showed a marked antidepressant-like activity. Compound 8g exhibited high affinities for the 5-HT1A (Ki = 17 nM) and 5-HT2A (Ki = 0.71 nM) receptors; it also produced a decrease of the immobility time and exhibited potent antidepressant-like effects in the FST and TST in mice.  相似文献   

7.
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23d and 23e were more potent than l-SPD at D3 receptor. According to the functional assays, 23d and 23e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.  相似文献   

8.
The “open” (Aopen) and “closed” (Aclosed) A-clusters of the acteyl-CoA synthase (ACS) enzyme from Moorella thermoacetica have been studied using a combined quantum mechanical (QM)/molecular mechanical (MM) approach. Geometry optimizations of the oxidized, one- and two-electron reduced Aopen state have been carried out for the fully solvated ACS enzyme, and the CO ligand has been modeled in the reduced models. Using a combination of both αopen and αclosed protein scaffolds and the positions of metal atoms in these structures, we have been able to piece together critical parts of the catalytic cycle of ACS. We have replaced the unidentified exogenous ligand in the crystal structure with CO using both a square planar and tetrahedral proximal Ni atom. A one-electron reduced A-cluster that is characterized by a proximal Ni atom in a tetrahedral coordination pattern observed in both the Aopen (lower occupancy proximal Ni) and Aclosed (proximal Zn atom) geometries with three cysteine thiolates and a modeled CO ligand demonstrates excellent agreement with the crystal structure atomic positions, particularly with the displacement of the side chain ring of Phe512 which appears to serve as a structural gate for ligand binding. The QM/MM optimized geometry of the A-cluster of ACS with an uncoordinated, oxidized proximal nickel atom in a square planar geometry demonstrates poor agreement with the atomic coordinates taken from the crystal structure. Based on these calculations, we conclude that the square planar proximal nickel coordination that has been captured in the Aopen structure does not correspond to the ligand-free, oxidized [Fe4S4]2+ − Nip2+ − Nid2+ state. Overall, these computations shed further light on the mechanistic details of protein conformational changes and electronic transitions involved in the ACS catalytic cycle.  相似文献   

9.
A series of novel aralkyl piperazine and piperidine derivatives were synthesized, and evaluated for their serotonin reuptake inhibitory and 5-HT1A/5-HT7 receptors affinities activity. Antidepressant activities in vivo of the selective compound were screened using the forced swimming test (FST) and tail suspension test (TST). The results indicated that compound 19a exhibited high affinities for the 5-HT1A/5-HT7 receptors (5-HT1A, Ki = 12 nM; 5-HT7, Ki = 3.2 nM) coupled with potent serotonin reuptake inhibition (IC50 = 14 nM) and showed a marked antidepressant-like effect in the FST and TST models.  相似文献   

10.
A series of Ru(II) polypyridyl complexes [Ru(bpy)2(ptdb)](ClO4)2 (1), [Ru(bpy)2(ptda)](ClO4)2 (2) and [Ru(bpy)2(ptdp)](ClO4)2 (3) with asymmetric intercalative ligands have been synthesized and characterized by EA, mass spectra, 1H NMR and cyclic voltammetry. The crystal structure of complex 1 has been determined. The DNA-binding properties of the complexes were investigated by absorption titration, luminescence spectroscopy and viscosity measurements. The experimental results suggest that all these complexes bind to DNA in an intercalation mode. The results also show that the order of DNA-binding affinities (A) of this series of complexes is A(1) < A(2) < A(3). It is further confirmed that a ligand planarity of the complexes is a very important factor in affecting the DNA-binding behaviors of such complexes. Theoretical studies for these complexes were also carried out with the density functional theory (DFT) method. The trend in the DNA-binding affinities of this series of complexes can be reasonably explained by the synthetical considerations of the calculated planarity of intercalative ligands, some frontier molecular orbital energies of the complexes and the planarity area (S) of the intercalative ligands.  相似文献   

11.
2-methyl-1,4-naphtoquinone 1 (vitamin K3, menadione) derivatives with different substituents at the 3-position were synthesized to tune their electrochemical properties. The thermodynamic midpoint potential (E1/2) of the naphthoquinone derivatives yielding a semi radical naphthoquinone anion were measured by cyclic voltammetry in the aprotic solvent dimethoxyethane (DME). Using quantum chemical methods, a clear correlation was found between the thermodynamic midpoint potentials and the calculated electron affinities (EA). Comparison of calculated and experimental values allowed delineation of additional factors such as the conformational dependence of quinone substituents and hydrogen bonding which can influence the electron affinities (EA) of the quinone. This information can be used as a model to gain insight into enzyme-cofactor interactions, particularly for enzyme quinone binding modes and the electrochemical adjustment of the quinone motif.  相似文献   

12.
A series of novel alkoxy-piperidine derivatives were synthesized and evaluated for their serotonin reuptake inhibitory and binding affinities for 5-HT1A/5-HT7 receptors. In vivo antidepressant activities of the selective compounds were explored using the forced swimming test (FST) and tail suspension test (TST) in mice. The results showed that compounds 7a (reuptake inhibition (RUI), IC50 = 177 nM; 5-HT1A, Ki = 12 nM; 5-HT7, Ki = 25 nM) and 15g (RUI, IC50 = 85 nM; 5-HT1A, Ki = 17 nM; 5-HT7, Ki = 35 nM) were potential antidepressant agents in animal behavioral models with high 5-HT1A/5-HT7 receptor affinities and moderate serotonin reuptake inhibition, and good metabolic stability in vitro.  相似文献   

13.
A series of arylalkanol and aralkyl piperazine derivatives have been synthesized and evaluated for 5-HT reuptake inhibitory abilities and binding affinities at the 5-HT1A/5-HT7 receptors. Antidepressant activities of the compounds in vivo were screened using the forced swimming test (FST). The results indicated that the compound 8j exhibited high affinities for the 5-HT1A/5-HT7 receptors (5-HT1A, ki?=?0.84?nM; 5-HT7, ki?=?12?nM) coupling with moderate 5-HT reuptake inhibitory activity (RUI, IC50?=?100?nM) and showed a marked antidepressant-like activity in the FST model.  相似文献   

14.
Small reversible changes in the absorption spectra of HCN, CO, NO and O2 complexes of ferrous diacetyldeuteroperoxidase A, not hitherto observed, were attributed to proton dissociation of a distal amino acid residue. From spectrophotometric titration data the pKa was measured as 5.5 (HCN), 5.6 (ligand free), 6.0 (CO), 6.55 (NO) and 8.0 (O2). The value of 8.0 for the pKa of the O2 complex was also obtained from a curve of pH dependence of proton uptake in the reaction of the ferrous enzyme with O2. Absorption bands in the visible region were shifted to longer wavelengths in the order of CO to NO to O2 which is the decreasing order of the energy of π1 level of these diatomic ligands.The pKa values for CO complexes of ferroperoxidases, isoenzymes A and (B+C) were varied with substituents at the 2 and 4 positions of deuterohemin IX, and the ΔpKaΔpK3 ratio was about 0.3 in both series of isoenzyme preparations, where pK3 is a measure of basicity of pyrrole nitrogen.The present data support the previous conclusion (Yamada and Yamazaki (1974) Arch. Biochem. Biophys., 165, 728) that the pKa for ferroperoxidases, measured from small reversible changes in the absorption spectra, represents a proton dissociation constant of a distal amino acid residue and that there is hydrogen bonding between the residue and a ligand atom directly bound to the iron atom.  相似文献   

15.
The polarographic behaviour of a series of tris(β- dicarbonylato)iron(III) chelates is reported. Conventional polarography and voltametric studies in acetonitrile revealed that these complexes undergo a one- electron reduction process at the Hg and carbon fibre electrodes. The influence of substituents within the β-dicarbonylato moiety is discussed in terms of Hammett σ functions. Reduction potentials are related to Racah's interelectronic repulsion parameter B and to the energy of the spin-forbidden transition 4T2g ←6A1g. The polarographic behaviour of binary mixtures indicates that ligand exchange in solution is a fast process and formation of mixed-ligand chelates in solution with predetermined stoichiometry is unlikely.  相似文献   

16.
Four cobalt(III) polypyridyl complexes, [Co(phen)3−n(dpq)n]3+ (phen = 1,10-phenanthroline, dpq = dipyrido[3,2-f:2′,3′-h]-quinoxaline) (n = 0, 1, 2, and 3) were synthesized and the influences of the dpq ligand on the photophysical properties, electrochemical properties, DNA binding affinities, as well as photonuclease activities of the complexes, were examined in detail. The presence of dpq ligand increases the DNA binding affinities of the corresponding complexes remarkably with respect to [Co(phen)3]3+. With the sequential substitution of phen ligand by dpq ligand, the 1O2 quantum yields of the corresponding complexes are enhanced greatly. As a result, the photonuclease activities follow the order of [Co(dpq)3]3+ > [Co(phen)(dpq)2]3+ > [Co(phen)2(dpq)]3+ ? [Co(phen)3]3+. It was found all the examined complexes can generate OH upon UV irradiation, and OH is also involved in DNA photocleavage as reactive oxygen species.  相似文献   

17.
Further comparisons were made of DNA-dependent RNA polymerase (nucleotide triphosphate: RNA nucleotidyl transferase, EC 2.7.7.6) activities, partially purified from purified nuclear fragments and chloroplasts and from the soluble phase of young wheat leaves. All three preparations had the same cation specificities for maximal RNA polymerase activity (Mg2+ > Mn2+ > Ca2+) and showed an absolute dependence on an added divalent cation. All three preparations showed the same thermal stabilities and pH optima, very similar pH-activity profiles, and the same type of kinetics with ATP as substrate. Enzyme activities showed negative cooperativity with respect to ATP concentration; the high and low Km values for ATP were not significantly different for the three preparations.  相似文献   

18.
Abstract: The selective serotonin (5-HT) agonist 8-hydroxydipropylaminotetralin (8-OH-DPAT) has been extensively used to characterize the physiological, biochemical, and behavioral features of the 5-HT1A receptor. A further characterization of this receptor subtype was conducted with membrane preparations from rat cerebral cortex and hippocampus. The saturation binding isotherms of [3H]8- OH-DPAT (free ligand from 200 pM to 160 nM) revealed high-affinity 5-HT1A receptors (KH= 0.7–0.8 nM) and lowaffinity (KL= 22–36 nM) binding sites. The kinetics of [3H]8-OH-DPAT binding were examined at two ligand concentrations, i.e., 1 and 10 nM, and in each case revealed two dissociation rate constants supporting the existence of high- and low-affinity binding sites. When the high-affinity sites were labeled with a 1 nM concentration of [3H]8- OH-DPAT, the competition curves of agonist and antagonist drugs were best fit to a two-site model, indicating the presence of two different 5-HT1A binding sites or, alternatively, two affinity states, tentatively designated as 5-HT1AHIGH and 5-HT1ALOW. However, the low correlation between the affinities of various drugs for these sites indicates the existence of different and independent binding sites. To determine whether 5-HT1A sites are modulated by 5′-guanylylimidodiphosphate, inhibition experiments with 5-HT were performed in the presence or in the absence of 100 μM 5′-guanylylimidodiphosphate. The binding of 1 nM [3H]8-OH-DPAT to the 5-HT1AHIGH site was dramatically (80%) reduced by 5′-guanylylimidodiphosphate; in contrast, the low-affinity site, or 5-HT1ALOW, was seemingly insensitive to the guanine nucleotide. The findings suggest that the high-affinity 5-HT1AHIGH site corresponds to the classic 5-HT1A receptor, whereas the novel 5-HT1ALOW binding site, labeled by 1 nM [3H]8-OH-DPAT and having a micromolar affinity for 5-HT, may not belong to the G protein family of receptors. To further investigate the relationship of 5-HT1A sites and the 5-HT innervation, rats were treated with p-chlorophenylalanine or with the neurotoxin p-chloroamphetamine. The inhibition of 5-HT synthesis by p-chlorophenylalanine did not alter either of the two 5-HT1A sites, but deafferentation by p-chloroamphetamine caused a loss of the low-affinity [3H]8-OH- DPAT binding sites, indicating-that these novel binding sites may be located presynaptically on 5-HT fibers and/or nerve terminals.  相似文献   

19.
The β2-adrenergic receptor (β2-AR) agonist [3H]-(R,R′)-methoxyfenoterol was employed as the marker ligand in displacement studies measuring the binding affinities (Ki values) of the stereoisomers of a series of 4′-methoxyfenoterol analogs in which the length of the alkyl substituent at α′ position was varied from 0 to 3 carbon atoms. The binding affinities of the compounds were additionally determined using the inverse agonist [3H]-CGP-12177 as the marker ligand and the ability of the compounds to stimulate cAMP accumulation, measured as EC50 values, were determined in HEK293 cells expressing the β2-AR. The data indicate that the highest binding affinities and functional activities were produced by methyl and ethyl substituents at the α′ position. The results also indicate that the Ki values obtained using [3H]-(R,R′)-methoxyfenoterol as the marker ligand modeled the EC50 values obtained from cAMP stimulation better than the data obtained using [3H]-CGP-12177 as the marker ligand. The data from this study was combined with data from previous studies and processed using the Comparative Molecular Field Analysis approach to produce a CoMFA model reflecting the binding to the β2-AR conformation probed by [3H]-(R,R′)-4′-methoxyfenoterol. The CoMFA model of the agonist-stabilized β2-AR suggests that the binding of the fenoterol analogs to an agonist-stabilized conformation of the β2-AR is governed to a greater extend by steric effects than binding to the [3H]-CGP-12177-stabilized conformation(s) in which electrostatic interactions play a more predominate role.  相似文献   

20.
(1) The kinetic parameters of rat pancreatic adenylate cyclase were evaluated, using GTP, p[NH]ppG or GTPγS as nucleotide activator, cholecystokinin as peptide hormone, and GDPβS and dibutyryl cyclic GMP as inhibitors of guanosine triphosphate and CCK-8, respectively. The time courses of activation and the degree of activation at steady state (EA/ETOT) were compatible with a simple two-state model of activation-deactivation based on a pseudo-monomolecular activation process (rate constant k+2, and a deactivation process (rate constant koff) that included, depending on the activating nucleotide, the hydrolysis of GTP (rate constant k2) and/or the dissociation of the intact nucleotide (rate constant k?1), so that EA/ETOT = k+1/(k+1 + k2 + k?a). (2) The hormone CCK-8 increased the value of k+1 with GTP dose-dependently, from 0.2 to 10.9 min?1. The value of k?1 increased 0.01 to 0.3 min?1 but the value of k2 was unaltered at 7 min?1, so that EA/ETOT increased 15-fold, from 4% to 61%. (3) A cholera toxin pretreatment at 30 μg/ml allowed also a large increase in EA/ETOT with GTP (up to 51%) but the underlying mechanism was different. It consisted of a 14-fold decrease in the koff value of the GTP-activated enzyme (from 7 min? to 0.5 min?1) that corresponded to a reduction in GTPase activity. When testing the system with p[NH]ppG, two added effects of the cholera toxin pretreatment were observed: a 4-fold increase in the value of k+1 (from 0.2 to 0.8 min?1) and the occurrence of a significant 0.3 min?1 value for k?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号