首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cephalosporin C (CPC) acylase is an enzyme which hydrolyzes CPC to 7-aminocephalosporanic acid (7-ACA) directly, and therefore has great potential in industrial application. In this study, the CPC acylase from a recombinant Escherichia coli was purified to high purity by immobilized metal affinity chromatography, and the CPC acylase was covalently attached to three kinds of epoxy supports, BB-2, ES-V-1 and LX-1000EP. The immobilized CPC acylase with LX-1000EP as the support shows the highest activity (81 U g−1) suggesting its potential in industrial 7-ACA production. The activity of immobilized enzyme was found to be optimal at pH between 8.5 and 9.5 and to increase with temperature elevation until 55 °C. Immobilized CPC acylase showed good stability at pH between 8.0 and 9.5 and at temperature up to 40 °C. To avoid product degradation, the production of 7-ACA utilizing immobilized enzyme was carried out at 25 °C, pH 8.5 in a designed reactor. Under optimal reaction conditions, a very high 7-ACA yield of 96.7% was obtained within 60 min. In the results of repeated batch production of 7-ACA, 50% activity of the initial cycle was maintained after being recycled 24 times and the average conversion rate of CPC reached 98%.  相似文献   

2.
7-Aminocephalosporanic acid (7-ACA) is an important material in the production of semisynthetic cephalosporins, which are the best-selling antibiotics worldwide. 7-ACA is produced from cephalosporin C via glutaryl-7-ACA (GL-7-ACA) by a bioconversion process using d-amino acid oxidase and cephalosporin acylase (or GL-7-ACA acylase). Previous studies demonstrated that a single amino acid substitution, D433N, provided GL-7-ACA acylase activity for gamma-glutamyltranspeptidase (GGT) of Escherichia coli K-12. In this study, based on its three-dimensional structure, residues involved in substrate recognition of E. coli GGT were rationally mutagenized, and effective mutations were then combined. A novel screening method, activity staining followed by a GL-7-ACA acylase assay with whole cells, was developed, and it enabled us to obtain mutant enzymes with enhanced GL-7-ACA acylase activity. The best mutant enzyme for catalytic efficiency, with a k(cat)/K(m) value for GL-7-ACA almost 50-fold higher than that of the D433N enzyme, has three amino acid substitutions: D433N, Y444A, and G484A. We also suggest that GGT from Bacillus subtilis 168 can be another source of GL-7-ACA acylase for industrial applications.  相似文献   

3.
Summary Three screening methods were used to isolate GL-7-ACA acylase-producing strains. Three positive isolates were identified with Pseudomonas nitroreducens CCRC 11041 possessing the highest activity, against GL-7-ACA and GL-7-ADCA. No activity was detected when Ceph C or succinyl-7-ACA was used as substrate; glutaric acid was found to be inhibitory. CCRC 11041 could produce maximal GL-7-ACA acylase activity when cultivated on meat extract medium II. The enzyme had a pH optimum of 5.0 and a temperature optimum of 42°C.  相似文献   

4.
To convert cephalosporin C to 7-aminocephalosporin (7-ACA), a D-amino acid oxidase (DAAO) gene from Trigonopsis variabilis and a glutaryl-7-aminocephalosporanic acid acylase (GL-7-ACA acylase) gene from Pseudomonas were cloned and expressed in recombinant Escherichia coli. For DAAO recombinant strain BL21(DE3)/pET-DAAO, a high DAAO activity of 250 U ml−1 was obtained by a fed-batch culture. A GL-7-ACA acylase gene, in which the signal peptide sequence was deleted, was also successfully expressed in a recombinant E. coli BL21(DE3)/pET-ACY with a high expression level of 3000 U l−1. A novel recombinant strain, BL21(DE3)/pET-DA, harboring both genes of DAAO and GL-7-ACA acylase, was further constructed, and a rather high DAAO activity of 140 U ml−1 and GL-7-ACA acylase activity of 950 U l−1 were simultaneously obtained. This recombinant strain, in which two genes are co-expressed, made it possible to catalyze cephalosporin C into 7-ACA directly.  相似文献   

5.
GL-7ACA酰化酶表达检测系统的建立   总被引:1,自引:0,他引:1  
戊二酰-7-氨基头孢烷酸(GL-7ACA)酰化酶能够催化GL-7ACA分解生成7-ACA,后者是工业半合成生产头孢类抗菌素所需的重要前体。为了准确地检测GL-7ACA酰化酶及其突变体的表达,本研究通过构建一系列质粒载体,建立了两个简便有效地测定GL-7ACA酰化酶基因acy表达量的系统,从而可对酶的比活力进行定量。我们将两个报告基因,即儿茶酚双加氧酶基因(xylE)和β-半乳糖苷酶基因(lacZ)分别置于acy基因的下游,使之与acy基因共用一个启动子,进行串联表达,各自构成一个多顺反子系统。实验证明,基因融合后的儿茶酚双加氧酶或β-半乳糖苷酶的活力可以间接反映acy的表达量。  相似文献   

6.
The first large-scale production of 7-aminocephalosporanic acid (7ACA) from cephalosporin C (CPC) using a wholly enzymatic synthesis method is reported here. We produced 7ACA from CPC in as high a molar yield as 85% using the immobilized enzymes D-amino acid oxidase (D-AOD) and glutaryl-7-ACA acylase (GL-acylase). In the first reactor, CPC is converted to keto-adipyl-7-aminocephalosporanic acid (keto-7ACA) using an immobilized D-AOD isolated from a yeast, Trigonopsis variabilis. The keto-7ACA is then spontaneously converted to glutaryl-7-aminocephalosporanic acid (GL-7ACA) via a chemical reaction with hydrogen peroxide. The hydrogen peroxide is also a product of the D-AOD reaction. Near quantitative conversion of the keto-7ACA to GL-7ACA was observed. The second reactor converts GL-7ACA to 7ACA using an immobilized GL-acylase, which was isolated from a reconbinant Escherichia coli. The final 7ACA crystalline product is a high quality product. The reactions are conducted under very mild aqueous conditions: pH 8.0 and 20 degrees to 25 degrees C. The production of desacetyl side products is minimal. This process is currently being implemented on an industrial scale to produce 7ACA. (c) 1995 John Wiley & Sons, Inc.  相似文献   

7.
戊二酰基-7-氨基头孢烷酸(GL-7-ACA)酰化酶是7-氨基头孢烷酸(7-ACA)两步酶法生产中的关键酶。成功构建组成型表达的产GL-7-ACA酰化酶重组大肠杆菌JM105/pMKC-ACY,并对其高表达条件进行了研究,得到了组成简单、廉价的国产培养基配方及操作简便、易于实现工业化的发酵工艺。在优化条件下,上罐补料高密度发酵的酶活高达6668.9U/L,是优化前的12.4倍,产率最高可达275.5U/(L.h),达到了工业生产的要求。  相似文献   

8.
7Beta-bromoacetyl amino cephalosporanic acid (BA-7-ACA), an analog of glutaryl-7-amino cephalosporanic acid (GL-7-ACA), can inhibit and specifically alkylate GL-7-ACA acylase (C130) from Pseudomonas sp.130, forming a carbon-carbon bond between BA-7-ACA and the C-2 on indole ring of Trp-beta4 residue of C130. Here we reported that BA-7-ACA labeled C130 (BA-C130) could self-catalyze the hydrolysis of BA-7-ACA during crystallization process. The hydrolysis was confirmed to be a reaction analogous to the one of GL-7-ACA by comparative matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) spectrometry analysis. BA-C130 was inactive at room temperature, but in the process of crystallization at 18 degrees C it catalyzed the hydrolysis of BA-7-ACA, and thus made the latter become a substrate. Meanwhile, in crystals, 7-ACA was released but the acetic acid still bound with Trp-beta4, and as a result, the enzyme remained to be inactive. These results demonstrated that Trp-beta4 in the alphabetabetaalpha motif was critical and sensitive for the activity of C130 and also suggested that there was a conformational change induced by deacylation during the process of crystallization.  相似文献   

9.
Two novel engineered bacteria, BL21(DE3)/pETCA1S and TG1/pSuperCA1S, were obtained which can secretory express the gene encoding glutaryl 7-amino-cephalosporanic acid acylase (GL-7ACA acylase) from Pseudomonas sp. 130 with high activity. The growth conditions of transformants for overproduction of GL-7ACA acylase were optimized: in intact cells of BL21(DE3)/pETCA1S and TG1/pSuperCA1S the activity of GL-7ACA acylase was 415 and 600 units g–1 dry cells, respectively. The highest specific activity of GL-7-ACA acylase is in the intact cell as compared with that of transformants constructed in our laboratory. In fiftieth generation of mutants transferred on agar plates the specific activity of GL-7ACA acylase remained constant.  相似文献   

10.
A novel method for detecting microorganisms capable of producing cephalosporin C (CPC) acylase and/or 7-(4-carboxybutanamido)cephalosporanic acid (GL-7-ACA) acylase has been developed. The method is based on the degradation of 2-nitro-5-(6-bromohexanoylamino)benzoic acid (NBHAB), a chromogenic substrate, into yellow 2-nitro-5-aminobenzoic acid by the action of the CPC acylase or the GL-7-ACA acylase. This method is very sensitive and quite specific, and has been successfully applied to screen the acylases from a variety of bacteria. A large number of colonies isolated on a plate surface from more than 67 samples and several known bacteria were tested by the NBHAB paper. Five NBHAB-positive strains and isolates were obtained. They were further examined by the reaction of their bacterial cells upon CPC and GL-7-ACA, respectively, and by thin-layer chromatography in order to distinguish the CPC acylase from the GL-7-ACA acylase.  相似文献   

11.
We performed a comparative characterization of three new cephalosporin acylases which were prepared from E. coli recombinant strains and found originally from Pseudomonas sp. A14, Bacillus laterosporus J1 and Pseudomonas diminuta N176. Both A14 and N176 acylases consisted of two non-identical subunits (α, β) whose molecular weights were 28,000 (α), 61,000 (β) and 26,000 (α), 58,000 (β), respectively, whereas J1 acylase consisted of a single peptide with molecular weight of 70,000. The maximum specific activities of A14, J1 and N176 acylases for glutaryl 7-ACA were 7.1, 5.3 and 100 units/mg, respectively, and that of N176 acylase for cephalosporin C was 3.1 units/mg. The Km values of glutaryl 7-ACA for A14, J1 and N176 acylases were 2.1, 3.2 and 2.6 mM, respectively, and that of cephalosporin C for N176 acylase was 4.8 mM. A14, J1 and N176 acylases exhibited differential activities for cephalosporins having an aliphatic dicarboxylic acid in the acyl side chain and only N176 acylase showed an activity for cephalosporin C. N176 acylase as well as A14 acylase also showed a weak activity for a cephalosporin derivative having a heterocyclic carboxylic acid in the side chain. A14, J1 and N176 acylases catalyzed the reverse reaction to synthesize glutaryl 7-ACA from 7-ACA and glutaric acid, although the rate of the synthesis was 10 to 105 fold slower than that of hydrolysis. The activities of the cephalosporin acylases were considerably inhibited by the reaction products, 7-ACA and glutaric acid. The types of the inhibition by 7-ACA and glutaric acid were both competitive. A14, J1 and N176 acylases were thermostable, their residual activities exceeding more than 90% after treatment at 50°C for 1 h at their optimal pHs.  相似文献   

12.
Glutaryl 7-aminocephalosporanic acid (GL-7-ACA) acylase of Pseudomonas sp. strain GK16 catalyzes the cleavage of the amide bond in the GL-7-ACA side chain to produce glutaric acid and 7-aminocephalosporanic acid (7-ACA). The active enzyme is an (alphabeta)(2) heterotetramer of two non-identical subunits that are cleaved autoproteolytically from an enzymatically inactive precursor polypeptide. In this study, we prepared and characterized a chemically modified enzyme, and also examined an effect of the modification on enzyme catalysis and autocatalytic processing of the enzyme precursor. We found that treatment of the enzyme with cyanate ion led to a significant loss of the enzyme activity. Structural and functional analyses of the modified enzyme showed that carbamylation of the free alpha-amino group of the N-terminal Ser-199 of the beta subunit resulted in the loss of the enzyme activity. The pH dependence of the kinetic parameters indicates that a single ionizing group is involved in enzyme catalysis with pK(a) = 6.0, which could be attributed to the alpha-amino group of the N-terminal Ser-199. The carbamylation also inhibited the secondary processing of the enzyme precursor, suggesting a possible role of the alpha-amino group for the reaction. Mutagenesis of the invariant N-terminal residue Ser-199 confirmed the key function of its side chain hydroxyl group in both enzyme catalysis and autoproteolytic activation. Partial activity and correct processing of a mutant S199T were in agreement with the general mechanism of N-terminal nucleophile hydrolases. Our results indicate that GL-7-ACA acylase utilizes as a nucleophile Ser-199 in both enzyme activity and autocatalytic processing and most importantly its own alpha-amino group of the Ser-199 as a general base catalyst for the activation of the hydroxyl group both in enzyme catalysis and in the secondary cleavage of the enzyme precursor. All of the data also imply that GL-7-ACA acylase is a member of a novel class of N-terminal nucleophile hydrolases that have a single catalytic center for enzyme catalysis.  相似文献   

13.
The enzymatic transformation of cephalosporin C to 7-amino-cephalosporanic acid (7-ACA) using coimmobilized -aminoacid oxidase (DAAO) and 7-β-(4-carboxybutanamido)cephalosporanic acid acylase (Gl-7-ACA acylase) is reported. The results from the coimmobilization of the two enzymes on different carriers and at different ratios of enzyme activities are described. When an inhibitor of catalase activity, such as NaN3 or H2O2, is present, the conversion rate to 7-ACA is higher, but more by-products are obtained. An optimum ratio of 60:1 between the enzymatic activities of DAAO and Gl-7-ACA acylase in the coimmobilized sample at 0.21 Ug−1 Gl-7-ACA acylase activity was determined. The results of using coimmobilized enzymes and of using a mixture of separately immobilized enzymes in the same process are compared.  相似文献   

14.
A batch of the immobilized industrial biocatalyst glutaryl-7-ACA acylase (GA), one of the two enzymes involved in the biotransformation of cephalosporin C (CefC) into 7-aminocephalosporanic acid (7-ACA), was characterized. K(m) value for glutaryl-7-ACA was 5 mM. Enzyme activity was found to be optimal at pH between 7 and 9.5 and to increase with temperature and in buffered solutions. To avoid product degradation, optimal reaction conditions were obtained working at 25 degrees C using a 50-mM phosphate buffer, pH 8.0. Immobilized GA showed good stability at pH value below 9 and at temperature up to 30 degrees C. The inactivation of immobilized GA in the presence of different amounts of H(2)O(2), a side product that might be present in the plant-scale industrial solutions of glutaryl-7-ACA, was also investigated, but the deactivation rates were negligible at H(2)O(2) concentration that might be reached under operative conditions. Finally, biocatalyst performance in the complete two-step enzymatic conversion process from CefC to 7-ACA was determined on a laboratory scale. Following the complete conversion of a 75 mM solution of CefC into glutaryl-7-ACA catalyzed by an immobilized D-amino acid oxidase (DAAO), immobilized GA was used for the transformation of this intermediate into the final product 7-ACA. This reaction was repeated for 42 cycles. An estimation of the residual activity of the biocatalyst showed that 50% inactivation of immobilized GA was reached after approximately 300 cycles, corresponding to an enzyme consumption of 0.4 kU per kg of isolated 7-ACA.  相似文献   

15.
Semisynthetic cephalosporins are primarily synthesized from 7-aminocephalosporanic acid (7-ACA), mainly by environmentally toxic chemical deacylation of cephalosporin C (CPC). Thus, the enzymatic conversion of CPC to 7-ACA by cephalosporin acylase (CA) would be very interesting. However, CAs use glutaryl-7-ACA (GL-7-ACA) as a primary substrate and the enzymes have low turnover rates for CPC. The active-site residues of a CA were mutagenized to various residues to increase the deacylation activity of CPC, based on the active-site conformation of the CA structure. The aim was to generate sterically favored conformation of the active-site to accommodate the D-alpha-aminoadipyl moiety of CPC, the side-chain moiety that corresponds to the glutaryl moiety of GL-7-ACA. A triple mutant of the CA, Q50betaM/Y149alphaK/F177betaG, showed the greatest improvement of deacylation activity to CPC up to 790% of the wild-type. Our current study is an efficient method for improving the deacylation activity to CPC by employing the structure-based repetitive saturation mutagenesis.  相似文献   

16.
头孢菌素酰化酶   总被引:2,自引:0,他引:2  
7-氨基头孢烷酸(7-amino cephalosporanic acid, 7-ACA)是医药工业合成大多数头孢菌素的重要原料.头孢菌素酰化酶(cephalosporin acylase, CA)催化头孢菌素C(CPC)和戊二酰-7-氨基头孢烷酸(GL-7ACA)的水解反应, 生成7-ACA.根据CA催化底物的不同, 可将其划分为两类:CPC酰化酶和GL-7ACA酰化酶.由CA的同源性、分子质量大小和基因结构, 可以把头孢菌素酰化酶划分为五种;讨论了酶的基本性质.通过CA与N端亲核水解酶(Ntn水解酶)的比较, 推测CA属于Ntn水解酶, 并由此可以进一步理解它们的生理功能.  相似文献   

17.
The penicillin G acylase (PGA) and cephalosporin acylase (CA) families, which are members of the N-terminal (Ntn) hydrolases, are valuable for the production of backbone chemicals like 6-aminopenicillanic acid and 7-aminocephalosporanic acid (7-ACA), which can be used to synthesize semi-synthetic penicillins and cephalosporins, respectively. Regardless of the low sequence similarity between PGA and CA, the structural homologies at their active-sites are very high. However, despite this structural conservation, they catalyze very different substrates. PGA reacts with the hydrophobic aromatic side-chain (the phenylacetyl moiety) of penicillin G (PG), whereas CA targets the hydrophilic linear side-chain (the glutaryl moiety) of glutaryl-7-ACA (GL-7-ACA). These different substrate specificities are likely to be due to differences in the side-chains of the active-site residues. In this study, mutagenesis of active-site residues binding the side-chain moiety of PG changed the substrate specificity of PGA to that of CA. This mutant PGA may constitute an alternative source of engineered enzymes for the industrial production of 7-ACA.  相似文献   

18.
GL-7-ACA酰化酶发酵培养基的均匀优化设计   总被引:3,自引:0,他引:3  
采用国产原料,应用均匀设计优选试验方法,对GL-7-ACA酰化酶生产用的发酵培养基配方进行了优化,取得了良好的效果,最终摇瓶效价达3919.03U/L。  相似文献   

19.
The main drawback in the industrial production of 7-aminocephalosporanic acid is the accumulation of intermediate (AKA-7-ACA) and destruction of substrate (cephalosporin C) catalyzed by catalase and beta-lactamase. To overcome the adverse effect of these enzymes on the conversion process, Escherichia coli D11 with mutation of katG, katE and ampC genes was constructed by P1 phage transduction, which enabled it not to produce catalase and beta-lactamase, respectively. At the same time, recA mutation in D11 increased the stability of foreign plasmid. With D11 used as host, both d-amino acid oxidase and GL-7-ACA acylase were cloned and expressed by the recombinant plasmids of pMSS or pMSTO, and the production of two enzymes could be increased by addition of 1.0% glucose. Cells of recombinant strain D11/pMSTO could directly convert cephalosporin C into 7-aminocephalosporanic acid at 25 degrees C, with the yield of more than 74%. The data suggested that the constructed D11/pMSTO could be an alternative catalyst for production of 7-aminocephalosporanic acid in one pot.  相似文献   

20.
Cephalosporins currently constitute the most widely prescribed class of antibiotics and are used to treat diseases caused by both Gram-positive and Gram-negative bacteria. Cephalosporins contain a 7-aminocephalosporanic acid (7-ACA) nucleus which is derived from cephalosporin C (CephC). The 7-ACA nucleus is not sufficiently potent for clinical use; however, a series of highly effective antibiotic agents could be produced by modifying the side chains linked to the 7-ACA nucleus. The industrial production of higher-generation semi-synthetic cephalosporins starts from 7-ACA, which is obtained by deacylation of the naturally occurring antibiotic CephC. CephC can be converted to 7-ACA either chemically or enzymatically using d-amino acid oxidase and glutaryl-7-aminocephalosporanic acid acylase. Both these methods show limitation, including the production of toxic waste products (chemical process) and the expense (the enzymatic one). In order to circumvent these problems, attempts have been undertaken to design a single-step means of enzymatically converting CephC to 7-ACA in the course of the past 10 years. The most suitable approach is represented by engineering the activity of a known glutaryl-7-aminocephalosporanic acid acylase such that it will bind and deacylate CephC more preferentially over glutaryl-7-aminocephalosporanic acid. Here, we describe the state of the art in the production of an effective and specific CephC acylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号