首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor F390 is the 8-OH adenylated form of the deazaflavin coenzyme F420, which is a central electron carrier in methanogenic bacteria. The enzymes catalysing the formation of F390 from ATP and F420 (F390 synthetase) and its hydrolysis into AMP and F420 (F390 hydrolase) were isolated and partially purified from Methanobacterium thermoautotrophicum. Both enzymes were oxygen-stable. The F390 synthetase tended to coelute with coenzyme F420 reducing hydrogenase during all purification steps. The 30-fold purified enzyme was still contaminated with the hydrogenase. The F390 hydrolase was purified 135-fold to a specific activity of 8.6 mumol/min/mg protein. The colourless enzyme consisted of one polypeptide of approximately 27,000 kd.  相似文献   

2.
I J Braks  M Hoppert  S Roge    F Mayer 《Journal of bacteriology》1994,176(24):7677-7687
The F420-reducing hydrogenase and the non-F420-reducing hydrogenase (EC 1.12.99.1.) were isolated from a crude extract of Methanobacterium thermoautotrophicum Marburg. Electron microscopy of the negatively stained F420-reducing hydrogenase revealed that the enzyme is a complex with a diameter of 15.6 nm. It consists of two ring-like, stacked, parallel layers each composed of three major protein masses arranged in rotational symmetry. Each of these masses appeared to be subdivided into smaller protein masses. Electron microscopy of negatively stained samples taken from intermediate steps of the purification process revealed the presence of enzyme particles bound to inside-out membrane vesicles. Linker particles of 10 to 20 kDa which mediate the attachment of the hydrogenase to the cytoplasmic membrane were seen. Immunogold labelling confirmed that the F420-reducing hydrogenase is a membrane-bound enzyme. Electron microscopy of the negatively stained purified non-F420-reducing hydrogenase revealed that the enzyme is composed of three subunits exhibiting different diameters (5, 4, and 2 to 3 nm). According to immunogold labelling experiments, approximately 70% of the non-F420-reducing hydrogenase protein molecules were located at the cell periphery; the remaining 30% were cytoplasmic. No linker particles were observed for this enzyme.  相似文献   

3.
Hydrophobic interaction chromatography of coenzyme F420-reducing hydrogenase purified from Methanobacterium formicicum depleted protein-bound FAD and eliminated the ability to reduce coenzyme F420. Preincubation of the FAD-depleted hydrogenase with FAD restored 85% of the coenzyme F420-reducing activity. FMN did not replace FAD. A Kd of 12 microM was estimated for FAD. Analysis of the reactivated hydrogenase following molecular sieve column chromatography showed that FAD was bound to protein. The results indicate that protein-bound FAD is reversibly removed from the coenzyme F420-reducing hydrogenase and that this flavin is required for the reduction of coenzyme F420.  相似文献   

4.
The ability of hydrolytic products of coenzyme F420 to substitute for F420 in the hydrogenase and nicotinamide adenine dinucleotide phosphate-liniked hydrogenase systems of Methanobacterium strain M.o.H. was kinetically determined. The nicotinamide adenine dinucleotide phosphate-linked hydrogenase system was employed to quantitate the levels of F420 in a number of methanogenic bacteria as well as in some nonmethanogens. Methanobacterium ruminantium and Methanosarcina barkeri contained low levels of F420, whereas other methanogens tested contained high levels (100 to 400 mg/kg of cells). F420 from six of the seven methanogens was tested by thin-layer electrophoresis and was found to be electrophoretically identical to that purified from Methanobacterium strain M.o.H. The only exception was M. barkeri, which contained a more electronegative derivative of F420. Acetobacterium woodii, Escherichia coli, and yeast extract contained no compounds able to substitute for F420 in the nicotinamide adenine dinucleotide phosphate-linked hydrogenase system.  相似文献   

5.
The cytological localization of the 8-hydroxy-5-deazaflavin (coenzyme F420)-reducing hydrogenase of Methanosarcina barkeri Fusaro was determined by immunoelectron microscopy, using a specific polyclonal rabbit antiserum raised against the homogeneous deazaflavin-dependent enzyme. In Western blot (immunoblot) experiments this antiserum reacted specifically with the native coenzyme F420-reducing hydrogenase, but did not cross-react with the coenzyme F420-nonreducing hydrogenase activity also detectable in crude extracts prepared from methanol-grown Methanosarcina cells. Immunogold labelling of ultrathin sections of anaerobically fixed methanol-grown cells from the exponential growth phase revealed that the coenzyme F420-reducing hydrogenase was predominantly located in the vicinity of the cytoplasmic membrane. From this result we concluded that the deazaflavin-dependent hydrogenase is associated with the cytoplasmic membrane in intact cells of M. barkeri during growth on methanol as the sole methanogenic substrate, and a possible role of this enzyme in the generation of the electrochemical proton gradient is discussed.  相似文献   

6.
Formate hydrogenlyase activity in a cell extract of Methanobacterium formicicum was abolished by removal of coenzyme F420; addition of purified coenzyme F420 restored activity. Formate hydrogenlyase activity was reconstituted with three purified components from M. formicicum: coenzyme F420-reducing hydrogenase, coenzyme F420-reducing formate dehydrogenase, and coenzyme F420. The reconstituted system required added flavin adenine dinucleotide (FAD) for maximal activity. Without FAD, the formate dehydrogenase and hydrogenase rapidly lost coenzyme F420-dependent activity relative to methyl viologen-dependent activity. Immunoadsorption of formate dehydrogenase or coenzyme F420-reducing hydrogenase from the cell extract greatly reduced formate hydrogenlyase activity; addition of the purified enzymes restored activity. The formate hydrogenlyase activity was reversible, since both the cell extract and the reconstituted system produced formate from H2 plus CO2 and HCO3-.  相似文献   

7.
Methanobacterium ruminantium was shown to possess a nicotinamide adenine dinucleotide phosphate (NADP)-linked factor 420 (F420)-dependent hydrogenase system. This system was also shown to be present in Methanobacterium strain MOH. The hydrogenase system of M. ruminantium also links directly to F420, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), methyl viologen, and Fe-3 plus. It has a pH optimum of about 8 and an apparent Km for F420 of about 5 x 10-6 M at pH 8 when NADP is the electron acceptor. The F420-NADP oxidoreductase activity is inactive toward nicotinamide adenine dinucleotide (nad) and no NADPH:NAD or FADH2(FMNH2):NAD transhydrogenase system was detected. Neither crude ferredoxin nor boiled crude extract of Clostridium pasteuranum could replace F420 in the NADP-linked hydrogenase reaction of M. ruminantium. Also, neitther F420 nor a curde "ferredoxin" fraction from M. ruminantium extracts could substitute for ferredoxin in the pyruvate-ferredoxin oxidoreductase reaction of C. pasteurianum.  相似文献   

8.
The 8-hydroxy-5-deazaflavin (coenzyme F420)-reducing and methyl-viologen-reducing hydrogenase of the anaerobic methanogenic archaebacterium Methanosarcina barkeri strain Fusaro has been purified 64-fold to apparent electrophoretic homogeneity. The purified enzyme had a final specific activity of 11.5 mumol coenzyme F420 reduced.min-1.mg protein-1 and the yield was 4.8% of the initial deazaflavin-reducing activity. The hydrogenase exists in two forms with molecular masses of approximately 845 kDa and 198 kDa. Both forms reduce coenzyme F420 and methyl viologen and are apparently composed of the same three subunits with molecular masses of 48 kDa (alpha), 33 kDa (beta) and 30 kDa (gamma). The aerobically purified enzyme was catalytically inactive. Conditions for anaerobic reductive activation in the presence of hydrogen, 2-mercaptoethanol and KCl or methyl viologen were found to yield maximal hydrogenase activity. Determination of the apparent Km of coenzyme F420 and methyl viologen gave values of 25 microM and 3.3 mM, respectively. The respective turnover numbers of the high molecular mass form of the hydrogenase are 353 s-1 and 9226 s-1.  相似文献   

9.
Welte C  Deppenmeier U 《The FEBS journal》2011,278(8):1277-1287
Methanosarcina mazei is a methanogenic archaeon that is able to thrive on various substrates and therefore contains a variety of redox-active proteins involved in both cytoplasmic and membrane-bound electron transport. The organism possesses a complex branched respiratory chain that has the ability to utilize different electron donors. In this study, two knockout mutants of the membrane-bound F(420) dehydrogenase (ΔfpoF and ΔfpoA-O) were constructed and analyzed. They exhibited severe growth deficiencies with trimethylamine, but not with acetate, as substrates. In cell lysates of the fpo mutants, the F(420):heterodisulfide oxidoreductase activity was strongly reduced, although soluble F(420) hydrogenase was still present. This led to the conclusion that the predominant part of cellular oxidation of the reduced form of F(420) (F(420)H(2)) in Ms. mazei is performed by F(420) dehydrogenase. Enzyme assays of cytoplasmic fractions revealed that ferredoxin (Fd):F(420) oxidoreductase activity was essentially absent in the ΔfpoF mutant. Subsequently, FpoF was produced in Escherichia coli and purified for further characterization. The purified FpoF protein catalyzed the Fd:F(420) oxidoreductase reaction with high specificity (the K(M) for reduced Fd was 0.5 μM) but with low velocity (V(max) = 225 mU·mg(-1)) and was present in the Ms. mazei cytoplasm in considerable amounts. Consequently, soluble FpoF might participate in electron carrier equilibrium and facilitate survival of the Ms. mazei Δech mutant that lacks the membrane-bound Fd-oxidizing Ech hydrogenase.  相似文献   

10.
F420-nonreactive and F420-reactive hydrogenases have been partially purified from Methanococcus jannaschii, an extremely thermophilic methanogen isolated from a submarine hydrothermal vent. The molecular weights of both hydrogenases were determined by native gradient electrophoresis in 5 to 27% polyacrylamide gels. The F420-nonreactive hydrogenase produced one major band (475 kilodaltons), whereas the F420-reactive hydrogenase produced two major bands (990 and 115 kilodaltons). The F420-nonreactive hydrogenase consisted of two subunits (43 and 31 kilodaltons), and the F420-reactive hydrogenase contained three subunits (48, 32, and 25 kilodaltons). Each hydrogenase was active at very high temperatures. Methyl viologen-reducing activity of the F420-nonreactive hydrogenase was maximal at 80°C but was still detectable at 103°C. The maximum activities of F420-reactive hydrogenase for F420 and methyl viologen were measured at 80 and 90°C, respectively. Low but measureable activity toward methyl viologen was repeatedly observed at 103°C. Moreover, the half-life of the F420-nonreactive hydrogenase at 70°C was over 9 h, and that of the F420-reactive enzyme was over 3 h.  相似文献   

11.
The membrane-associated coenzyme F420-reducing hydrogenase of Methanobacterium formicicum was purified 87-fold to electrophoretic homogeneity. The enzyme contained alpha, beta, and gamma subunits (molecular weights of 43,000, 36,700, and 28,800, respectively) and formed aggregates (molecular weight, 1,020,000) of a coenzyme F420-active alpha 1 beta 1 gamma 1 trimer (molecular weight, 109,000). The hydrogenase contained 1 mol of flavin adenine dinucleotide (FAD), 1 mol of nickel, 12 to 14 mol of iron, and 11 mol of acid-labile sulfide per mol of the 109,000-molecular-weight species, but no selenium. The isoelectric point was 5.6. The amino acid sequence I-N3-P-N2-R-N1-EGH-N6-V (where N is any amino acid) was conserved in the N-termini of the alpha subunits of the F420-hydrogenases from M. formicicum and Methanobacterium thermoautotrophicum and of the largest subunits of nickel-containing hydrogenases from Desulfovibrio baculatus, Desulfovibrio gigas, and Rhodobacter capsulatus. The purified F420-hydrogenase required reductive reactivation before assay. FAD dissociated from the enzyme during reactivation unless potassium salts were present, yielding deflavoenzyme that was unable to reduce coenzyme F420. Maximal coenzyme F420-reducing activity was obtained at 55 degrees C and pH 7.0 to 7.5, and with 0.2 to 0.8 M KCl in the reaction mixture. The enzyme catalyzed H2 production at a rate threefold lower than that for H2 uptake and reduced coenzyme F420, methyl viologen, flavins, and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Specific antiserum inhibited the coenzyme F420-dependent but not the methyl viologen-dependent activity of the purified enzyme.  相似文献   

12.
Methanogens catalyze the hydrogen-dependent eight-electron reduction of carbon dioxide to methane. Two of the key catalysts in the eight-electron reduction pathway are the nickel-containing enzymes F420-reducing hydrogenase and methyl reductase. In the present study, the structures of these archaebacterial enzymes from Methanobacterium thermoautotrophicum delta H have been determined by electron microscopy. By negative stain techniques, F420 hydrogenase was found to be a ring structure with a diameter of 15.7 nm and an inner channel 4 nm in diameter. Shadow-casting experiments demonstrated that the rings were 8.5 nm deep, indicating a holoenzyme molecular weight of 8.0 X 10(5). Methyl reductase appeared to be an oligomeric complex of dimensions 8.5 by 9 by 11 nm, with a central stain-penetrating region. The morphology and known subunit composition suggest a model in which the subunits are arranged as an eclipsed pair of open trimers. Methyl reductase was also found in the form of larger aggregates and in paracrystalline arrays derived from highly concentrated solutions. The extremely large size of F420 hydrogenase and the methyl reductase supramolecular assemblies may have relevance in vivo in the construction of multiprotein arrays that function in methane biogenesis.  相似文献   

13.
The ultrastructural locations of the coenzyme F420-reducing formate dehydrogenase and coenzyme F420-reducing hydrogenase of Methanobacterium formicicum were determined using immunogold labeling of thin-sectioned, Lowicryl-embedded cells. Both enzymes were located predominantly at the cell membrane. Whole cells displayed minimal F420-dependent formate dehydrogenase activity or F420-dependent hydrogenase activity, and little activity was released upon osmotic shock treatment, suggesting that these enzymes are not soluble periplasmic proteins. Analysis of the deduced amino acid sequences of the formate dehydrogenase subunits revealed no hydrophobic regions that could qualify as putative membrane-spanning domains.Abbreviation PBST Phosphate-buffered saline containing 0.1% (v/v) Triton X-100  相似文献   

14.
During the methanogenic fermentation of acetate by Methanosarcina thermophila, the CO dehydrogenase complex cleaves acetyl coenzyme A and oxidizes the carbonyl group (or CO) to CO2, followed by electron transfer to coenzyme M (CoM)-S-S-coenzyme B (CoB) and reduction of this heterodisulfide to HS-CoM and HS-CoB (A. P. Clements, R. H. White, and J. G. Ferry, Arch. Microbiol. 159:296-300, 1993). The majority of heterodisulfide reductase activity was present in the soluble protein fraction after French pressure cell lysis. A CO:CoM-S-S-CoB oxidoreductase system from acetate-grown cells was reconstituted with purified CO dehydrogenase enzyme complex, ferredoxin, membranes, and partially purified heterodisulfide reductase. Coenzyme F420 (F420) was not required, and CO:F420 oxidoreductase activity was not detected in cell extracts. The membranes contained cytochrome b that was reduced with CO and oxidized with CoM-S-S-CoB. The results suggest that a novel CoM-S-S-CoB reducing system operates during acetate conversion to CH4 and CO2. In this system, ferredoxin transfers electrons from the CO dehydrogenase complex to membrane-bound electron carriers, including cytochrome b, that are required for electron transfer to the heterodisulfide reductase. The cytochrome b was purified from solubilized membrane proteins in a complex with six other polypeptides. The cytochrome was not reduced when the complex was incubated with H2 or CO, and H2 uptake hydrogenase activity was not detected; however, the addition of CO dehydrogenase enzyme complex and ferredoxin enabled the CO-dependent reduction of cytochrome b.  相似文献   

15.
Methanobacterium ruminantium was shown to possess a formate dehydrogenase which is linked to factor 420 (F420) as the first low-molecular-weight or anionic electron transfer coenzyme. Reduced F420 obtained from the formate dehydrogenase can be further linked to the formation of hydrogen via the previously described F420-dependent hydrogenase reaction, thus constituting an apparently simple formate hydrogenlyase system, or to the reduction of nicotinamide adenine dinucleotide phosphate via F420:nicotinamide adenine dinucleotide phosphate oxidoreductase. The results indicate that hydrogen and formate, the only known energy sources for M. ruminantium and many other methanogenic bacteria, should be essentially equivalent as sources of electrons in the metabolism of this organism.  相似文献   

16.
Cell extracts of Methanobacterium thermoautotrophicum (strain delta H) were found to perform a hydrogen-dependent reduction of factor 390 (F390), the 8-adenylyl derivative of coenzyme F420. Upon resolution of cell extracts, F390-reducing activity copurified with the coenzyme F420-dependent hydrogenase. This indicates that F390 serves as a substrate of that enzyme. Activity towards F390 was approximately 40-fold lower than that towards coenzyme F420 (0.12 and 5.2 mumol.min-1.mg of protein-1, respectively). In addition, cell extracts catalyzed the hydrolysis of F390 to AMP and coenzyme F420. This hydrolysis required the presence of thiols (6 mM) and much ionic strength (1 M KCl) and was reversibly inhibited by oxygen. The reaction proceeded optimally at pH 8.2 and was Mn dependent. Conditions for F390 hydrolysis in cell extracts are in many respects opposite to those previously described for F390 synthesis.  相似文献   

17.
The localization of hydrogenase in the phototrophic bacterium Thiocapsa roseopersicina was investigated by subcellular fractionations, and transmission electron microscopic immunocytochemistry. By using sonicated cells and measuring in vitro hydrogenase activities in soluble and membrane fractions, respectively, a weak hydrophobic interaction between the hydrogenase enzyme and the T. roseopersicina membranes was observed. Polyclonal antisera directed against the purified hydrogenase were raised in rabbits and exhibited one band in native-PAGE/Western immunoblot analysis. Native-PAGE/activity stain confirmed the identity of this band as being hydrogenase. Immunocytolocalization experiments using ultrathin sections showed an internal localization of the hydrogenase enzyme. A higher specific labeling was associated with chromatophores, indicating a possible coupling of hydrogenase with the photosynthetic membranes in the T. roseopersicina cells.  相似文献   

18.
A methylviologen and 8-hydroxy-5-deazaflavin(F420)-reducing hydrogenase was purified over 800-fold to near homogeneity from the archaebacterium Methanococcus voltae with 10 U mg-1 F420-reducing activity. It is the only hydrogenase in this organism. The enzyme showed Km values of 16 microM for F420 and 1.2 mM for methylviologen. A turnover number of 1050 min-1 was calculated for the minimal active unit. The protein tends to aggregate. The molecular mass of the minimal active unit is 105 kDa. Larger molecules of 745 kDa were regularly observed. The enzyme was resolved into subunits with molecular masses of 55 kDa, 45 kDa, 37 kDa and 27 kDa by SDS/polyacrylamide gel electrophoresis. Reversible conversion of an anionic into an uncharged form was observed by DEAE-cellulose chromatography with concomitant changes in substrate specificities. The methylviologen-reducing activity was heat-resistant up to 65 degrees C and was not affected by antiserum raised against the native enzyme, while F420 reduction was inactivated by both treatments. Nickel and selenium contents were determined as 0.6-0.7 mol each, FAD content as 1 mol and iron as 4.5 mol/mol protein (105 kDa), respectively. Electron micrographs taken from the purified enzyme show ring-shaped molecules of 18 nm diameter, which represent the high-molecular-mass species of the enzyme.  相似文献   

19.
An amiloride-resistant mutant with diminished Na+/H+ antiporter activity was isolated from Methanothermobacter thermoautotrophicus. To define the protein basis of amiloride resistance, the composition of membrane-associated proteins was partially characterized and compared with that of the wild type strain. An abundant 670-kDa membrane-associated protein that was present only in the mutant strain was analyzed by MALDI-TOF MS and identified as a coenzyme F420-reducing hydrogenase. The amiloride resistance was not accompanied by changes in protein size or changes in the level of subunits A or B of the A1A0-type ATP synthase; on the other hand, the SDS-PAGE patterns of the chloroform-methanol extract of membranes from both strains were different. Two bands with calculated molecular mass 16 and 11 kDa were identified as MtrD and AtpK, respectively. The observed over-expression of a 22.7-kDa protein in the mutant cells may represent the multimeric form of the MtrD subunit. These results show that the impairment of the Na+/H+ antiporter system in the amiloride-resistant mutant of Methanothermobacter thermoautotrophicus is accompanied by only small changes in a few membrane-associated proteins.  相似文献   

20.
A hydrophobic, redox-active component with a molecular mass of 538 Da was isolated from lyophilized membranes of Methanosarcina mazei Gö1 by extraction with isooctane. After purification on a high-performance liquid chromatography column, the chemical structure was analyzed by mass spectroscopy and nuclear magnetic resonance studies. The component was called methanophenazine and represents a 2-hydroxyphenazine derivative which is connected via an ether bridge to a polyisoprenoid side chain. Since methanophenazine was almost insoluble in aqueous buffers, water-soluble phenazine derivatives were tested for their ability to interact with membrane-bound enzymes involved in electron transport and energy conservation. The purified F420H2 dehydrogenase from M. mazei Gö1 showed highest activity with 2-hydroxyphenazine and 2-bromophenazine as electron acceptors when F420H2 was added. Phenazine-1-carboxylic acid and phenazine proved to be less effective. The Km values for 2-hydroxyphenazine and phenazine were 35 and 250 μM, respectively. 2-Hydroxyphenazine was also reduced by molecular hydrogen catalyzed by an F420-nonreactive hydrogenase which is present in washed membrane preparations. Furthermore, the membrane-bound heterodisulfide reductase was able to use reduced 2-hydroxyphenazine as an electron donor for the reduction of CoB-S-S-CoM. Considering all these results, it is reasonable to assume that methanophenazine plays an important role in vivo in membrane-bound electron transport of M. mazei Gö1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号