首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macronuclear chromatin from vegetative cells of one mating type (O, or E) in Paramecium tetraurelia was transferred by micropipetting into the macronucleus of vegetative cells of the opposite mating type (E, or O). A few percent (<5%) of the recipient cells gave rise to, by asexual propagation, progenies amongst which some were found to have transformed their mating type in accordance with the donor chromatin. This demonstrates the transformation of mating type during asexual propagation of the cells. In the case of E chromatin transfer to O recipients, many asexual progenies of the recipients transformed from O to E mating type nevertheless remained O after one sexual cycle. Such results indicate two distinctive macronuclear activities in mating type determination: one determining mating type of vegetative cells and the other influencing the differentiation of the developing post-zygotic macronucleus for mating type. The results are interpreted by the hypothesis that the quantity of E macronuclear chromatin required for differentiation of the developing post-zygotic macronucleus from mating type is larger than required for mating type determination in vegetative cells.  相似文献   

2.
Ramoino P  Diaspro A  Fato M  Beltrame F 《Cytometry》1999,35(4):346-352
BACKGROUND: In Paramecium primaurelia, an exconjugant cell can produce two lines with different mating capacities. Mating type II cells can form a higher food vacuole number and digest the nutrient taken up in a shorter time; thus, mating type II cells grow at a faster rate than do mating type I cells. The present study was done to determine whether cells that ingest more nutrients also have a larger amount of storage lipids. METHODS: Quantitative and qualitative determinations of neutral lipids were obtained by means of cytofluorometry and fluorescence confocal laser scanning microscopy (CLSM), respectively, by using nile red on cells in different physiologic states. RESULTS: Lipid droplet number and neutral lipid content were higher in mating type II cells than in mating type I cells in the early logarithmic growth phase (i.e., immature well-fed cells). These values were reversed during the middle and the late logarithmic phases and became equal in the stationary phase (i.e., mature starved cells). In well-fed cells maintained with food excess, differences in neutral lipid content between the two mating types also were present in mature cells. CONCLUSIONS: Although differences between mating type I and mating type II lines were not correlated to cell size, a relation was found between lipid content and food ingestion capacity. A depletion of bacteria in the culture medium could be responsible for the lack of differences in mature starved cells. CLSM allowed us to gather volume information about the lipid droplet distribution within the cell.  相似文献   

3.
The micronucleus from vegetative cells of one mating type (O or E) in Paramecium tetraurelia was transplanted by micropipet into amicronucleate cells of opposite mating type (E or O). When autogamy was induced in the recipient cells, they developed new macronuclei and micronuclei derived from the transplanted micronucleus and usually expressed the same mating type as the recipients. The results indicate that micronuclei in the asexual phase may be undetermined for mating type. Recipient E cells in which the macronucleus had been previously removed were transplanted with a whole macronucleus from an O cell. Their mating type was soon transformed E to O before the occurrence of autogamy, and remained O after autogamy. This demonstrates that the transplanted macronucleus determined the O cytoplasmic state to determine the developing zygotic macronucleus for mating type O. It is unlikely that the micronucleus is determined for mating type in O or E cell during the asexual cycle.  相似文献   

4.
Mating type interaction between heterothallic strains of Closteriumperacerosum-strigosum- littorale was studied during the conjugationprocess. When vegetative cells of opposite mating types weremixed under the nitrogen depleted mating conditions, the formationof conjugation-papilla and the release of the protoplast withinthe distended papilla from the gametangial cell were shown inboth the paired and unpaired cells. The protoplasts of pairedcells fused to form zygotes, while those of unpaired cells broke.When cells were mixed at a ratio of around 5 to 3 (mating typeplus to mating type minus), sexual activation occurred at thehighest frequency. Mixing at a ratio of 1 to 3, however, inducedthe highest frequency of disrupted cells. Mating type plus cellswere found to be broken specifically when direct contact withmating type minus cells was prevented. This disruption seemedto be mediated by a factor secreted from mating type minus cells. (Received March 20, 1981; Accepted August 18, 1981)  相似文献   

5.
K Abe  I Kusaka    S Fukui 《Journal of bacteriology》1975,122(2):710-718
The events which occur in the early stages of the mating process of the yeast Rhodosporidium toruloides between strains M-919 (mating type A) and M-1057 (mating type a) were investigated. In preliminary experiments we determined the frequency of mating by two newly designed methods: the liquid culture method and the membrane-filter microculture method. The mating frequencies of strains M-919 and M-1057 were 89% in the liquid culture method and 62% in the membrane-filter microculture method. The early stages in the mating process included the following events: (i) M-919 cells produce constitutively the extracellular inducing substance (A factor), (ii) M-1057 cells receive A factor, and in response to it they form mating tubes and secrete another inducing substance (a factor), (iii) M-919 cells receive a factor, and in response to it they form mating tubes, (iv) mating tubes elongate to the cells or the tubes of mating partner, (v) tips of the growing tubes recognize the opposite mating type cells or their tubes, followed by cell-to-cell fusion.  相似文献   

6.
J N Strathern  I Herskowitz 《Cell》1979,17(2):371-381
Homothallic Saccharomyces yeasts efficiently interconvert between two cell types, the mating types a and alpha. These interconversions have been proposed to occur by genetic rearrangement ("cassette" insertion) at the locus controlling cell type (the mating type locus). The pattern of switching from one cell type to the other during growth of a clone of homothallic cells has been followed by direct microscopic observation, and the results have been summarized as "rules" of switching. First, when a cell divides, it produces either two cells with the same mating type as the original cell or two cells that have switched to the other mating type. This observation suggests that the mating type locus is changed early in the cell cycle, in late Gl or during S. Second, the ability to produce cells that have switched mating type is restricted to cells that have previously divided ("experienced cells"). Spores and buds ("inexperienced cells") rarely if ever give rise to cells with changed mating type. A homothallic yeast cell thus exhibits asymmetric segregation of the potential for mating type interconversion--at each cell division, the mother, but not the daughter, is capable of switching cell types in its next division. Homothallic cells also exhibit directionality in switching: experienced cells switch to the opposite cell type in more than 50% of cell divisions. These results show that the process of mating type interconversion is itself controlled during growth of a clone of homothallic cells. By analogy and extension of these results, we propose that multiple cell types can be produced in a specific pattern during development of a higher eucaryote in a model involving sequential cassette insertion.  相似文献   

7.
The study of food ingestion and egestion carried out on Paramecium primaurelia mating reactive cells shows that, after their transfer into a medium with suspended particles, the complementary mating type cells exhibit very significant differences in the food vacuole formation and egestion rate. Under the same external environmental conditions, the mating type II cells form and egest a higher number of food vacuoles when compared with mating type I cells. The higher rate of food vacuole formation shown by the mating type II cells is related to their faster growth rate.  相似文献   

8.
Mating-specific adhesion between haploid yeast cells of opposite mating type (a and alpha) was studied by using a quantitative agar plate assay. Washed a and alpha cells that had not previously been exposed to their respective opposite mating type ("naive" cells) adhered relatively weakly. In water, only 5 to 10% of the a cells stuck tightly enough to alpha cells to give rise subsequently to diploid clones on the assay plates. Under optimum conditions (pH 6 to 7, at least 0.1 M Nacl or 0.01 M Mg(2+)), there was about 20% adhesion. Nevertheless, this weak binding defined a mating type-specific interaction because, even under optimum conditions, the homologous interactions (a with a and alpha with alpha) yielded only 3 to 5% cohesion. In contrast to these results, washed cells that had been preincubated in the cell-free culture medium of their opposite mating type ("preconditioned" cells) adhered quite strongly. The degree of adhesion between preconditioned cells (40 to 50%) was essentially unaffected by extremes of ionic strength, pH, and temperature and by the absence of divalent cation. This strong interaction was also mating type specific since cohesion between preconditioned cells of like mating type was only about 5%. The increase in agglutinability was obtained if only the a cells were preconditioned and could be induced by highly purified preparations of natural or synthetically prepared alpha-factor, an oligopeptide pheromone released by the alpha cells. The appearance of increased adhesiveness was blocked by an inhibitor of RNA synthesis and by an inhibitor of protein synthesis, but not by an inhibitor of polysaccharide synthesis. Adhesion between preconditioned cells could be inhibited by pretreatment with functionally univalent succinylated concanavalin A or with extracts from preconditioned cells of the opposite mating type. These results confirm in a quantitative manner that the recognition between conjugating cells of S. cerevisiae is a developmentally regulated event that is under the control of the mating type locus.  相似文献   

9.
When a mating type cells of Saccharomyces cerevisiae are exposed to the mating pheromone alpha-factor in liquid cultures, there is a time-dependent loss of alpha-factor activity from the culture fluid. This loss of biological activity can be directly correlated with the proteolysis of the pheromone by a mating type cells. The metabolism of alpha-factor by a mating type cells may be measured by using either in vitro 125I-labeled or in vivo 35S-labeled pheromone. Addition of chloroquine to growing cultures of a mating type cells at concentrations which cause no detectable alterations in cell growth produces a potentiation of alpha-factor mediated cell cycle arrest. This potentiation of alpha-factor activity is directly correlated with the inhibition of alpha-factor proteolysis. Thus, while proteolytic digestion of alpha-factor appears to be related to the mechanism whereby a mating type cells "detoxify" alpha-factor and recover from cell cycle arrest, proteolysis of the mating factor is not necessary for alpha-factor mediated cell cycle arrest.  相似文献   

10.
Sexual cell division (SCD) that produces two gametangial cells from one vegetative mother cell is the first step observed morphologically in the sexual reproduction in the Closterium peracerosum–strigosum– littorale complex. SCD‐inducing activities specific for each mating‐type cells were detected in the medium in which both mating type cells has been cocultured. Mating‐type minus (mt ? ) cells released SCD‐inducing substance specific for mating‐type plus (mt + ) cells and were designated as SCD‐ inducing pheromone (IP)‐minus, whereas mt ? specific substances released from mt + cells were designated as SCD‐IP‐plus. Culture medium was subjected to gel filtration, and then SCD‐IP‐plus and SCD‐IP‐minus chemical were found to have the molecular masses of 90–100 kDa and 10–20 kDa, respectively. It was evident that light was imperative for this type of signaling. Gametangial cells of both mating types were obtained from vegetative cells by treatment with SCD‐IPs. Gametangial mt + cells showed high competency for conjugation with vegetative mt ? cells, whereas gametangial mt ? cells showed low competency for conjugation with vegetative mt + cells. These results indicate that SCD in both mating type cells is induced by high molecular weight sex pheromones and that the roles of gametangial cells in the process of conjugation differ by sex.  相似文献   

11.
In the yeast Saccharomyces cerevisiae, sexual conjugation between haploid cells of opposite mating type results in the formation of a diploid zygote. When treated with fluorescently labeled concanavalin A, a zygote stains nonuniformly, with the greatest fluorescence occurring at the conjugation bridge between the two haploid parents. In the mating mixture, unconjugated haploid cells often elongate to pear-shaped forms ("shmoos") which likewise exhibit asymmetric staining with the most intense fluorescence at the growing end. Shmoo formation can be induced in cells of one mating type by the addition of a hormone secreted by cells of the opposite mating type; such shmoos also stain asymmetrically. In nearly all cases, the nonmating mutants that were examined stained uniformly after incubation with the appropriate hormone. Asymmetric staining is not observed with vegetative cells, even those that are budded. These results suggest that, before and during conjugation, localized cell surface changes occur in cells of both mating types; the surface alterations facilitate fusion and are apparently mediated by the hormones in a manner that is mating-type specific.  相似文献   

12.
The a mating type locus of U. maydis specifies cell signaling components.   总被引:11,自引:0,他引:11  
M B?lker  M Urban  R Kahmann 《Cell》1992,68(3):441-450
The a mating type locus of the phytopathogenic fungus U. maydis controls fusion of haploid cells and filamentous growth of the dikaryotic mycelium. The a locus exists in two alleles, termed a1 and a2, which are defined by nonhomologous DNA regions comprising 4.5 kb for a1 and 8 kb for a2, flanked by identical sequences. Based on functional assays, mutants, and sequencing, we demonstrate that the mating type in each allele is determined by a set of two genes. One encodes a precursor for a lipopeptide mating factor, and the other specifies the receptor for the pheromone secreted by cells of opposite mating type. Thus, U. maydis employs a novel strategy to determine its mating type by providing the primary determinants of cell-cell recognition directly from the mating type locus.  相似文献   

13.
Summary An efficient method for the production of synchronous zygotes in Saccharomyces cerevisiae is described. Cells were synchronised under defined conditions in either an a, mixed culture or by incubation of each mating type in cell-free medium in which cells of the opposite mating type had been grown. Synchronised cells were allowed to fuse under defined conditions on filter membranes. This method was used to test the fidelity of conjugation in S. cerevisiae. Under conditions where cells of a or mating type were in contact with up to 6 cells of each of two strains of opposite mating type, less than 1 multiple mating in 104 diploid matings occurred. It is concluded that in sexual conjugation in S. cerevisiae some process distinct from cell contact restricts cell fusion to paired combinations of conjugant cells.  相似文献   

14.
Simon P  Houston P  Broach J 《The EMBO journal》2002,21(9):2282-2291
Haploid Saccharomyces cells have the remarkable potential to change mating type as often as every generation, a process accomplished by an intrachromosomal gene conversion between an expressor locus MAT and one of two repositories of mating type information, HML or HMR. The particular locus selected as donor is dictated by the mating type of the cell, a bias that ensures productive mating type interconversion. Here we use green fluorescent protein tagging of the expressor and donor loci on chromosome III to show that this preference for donor locus does not result from a predetermined organization of chromosome III: HML and MAT as well as HMR and MAT remain separated in cells of both mating types. In fact, cells in which the inappropriate donor locus is artificially tethered to MAT still predominantly select the correct donor. We find, though, that initiation of switching leads to a rapid association of the correct donor locus with MAT. Thus, in mating type switching in Saccharomyces, donor preference is imposed at commitment to recombination rather than at physical contact of interacting DNA strands.  相似文献   

15.
The sex-specific glycoprotein agglutination substance, responsiblefor sexual agglutination, solubilized from the surface of haploidcells of a or a mating type by the autoclave method had thefollowing effects on mating reaction in Saccharomyces cerevisiae.Sexual agglutination was inhibited by the agglutination substanceof the opposite mating type in living cells as well as in heat-killedcells. Formation of zygotes was completely inhibited, when botha and a cells were treated with the agglutination substanceof the opposite mating type. The a and a agglutination substanceswere inactivated by cells of the opposite mating type, withthe degree of inactivation being greater for the former. Theenzyme responsible for the inactivation of a agglutination substanceseems to be carboxypeptidase Y. 1 This paper is dedicated to the late Professor J. Ashida, KyotoUniversity. 2 Present address: Department of Plant Pathology, Universityof California, Davis, CA. 95616, U.S.A. (Received November 1, 1982; Accepted January 19, 1983)  相似文献   

16.
Mating pheromone-induced alteration of the cell surface proteins of haploid cells, presumed to play crucial roles in the specific cell-cell interactions during sexual conjugation of Tremella mesenterica , was investigated. Exposed surface proteins were revealed by lactoperoxidase-catalyzed iodination in combination with polyacrylamide gel electrophoresis and autoradiography. From comparison of the molecular species of 125I-labeled surface proteins of the vegetative and the gamete (mating pheromone-treated) cells of the two compatible mating types (ab and AB), it was suggested that a striking change in cell surface structure occurs during the differentiation; although labeled protein species of the vegetative cells of the two mating types were indistinguishable, several new species, both mating type specific and nonspecific, appeared in the gamete cells. Turnover of the labeled proteins of the vegetative cells was negligible, whereas that of the gamete cells was rapid with release of low-molecular-weight labeled proteins in the medium. A role for the labeled surface proteins of the gamete cells in the cell-cell interactions during sexual conjugation was suggested by the following: the surface changes were induced by mating pheromone; the labeled proteins were preferentially localized on the surface of the mating tube; the labeled species appeared sequentially during the differentiation; and mating type-specific species were present in both mating types.  相似文献   

17.
Yeast cells approach a mating partner by polarizing along a gradient of mating pheromones that are secreted by cells of the opposite mating type. The Bar1 protease is secreted by a-cells and, paradoxically, degrades the α-factor pheromones which are produced by cells of the opposite mating type and trigger mating in a-cells. This degradation may assist in the recovery from pheromone signaling but has also been shown to play a positive role in mating. Previous studies suggested that widely diffusing protease can bias the pheromone gradient towards the closest secreting cell. Here, we show that restricting the Bar1 protease to the secreting cell itself, preventing its wide diffusion, facilitates discrimination between equivalent mating partners. This may be mostly relevant during spore germination, where most mating events occur in nature.  相似文献   

18.
Sexual agglutination and pheromone interaction between cells of two mating types, a and alpha, in the yeast Saccharomyces globosus were studied. S. globosus was shown to produce mating-type-specific factors analogs to a- and alpha-mating pheromones of Saccharomyces cerevisiae and to undergo the sexual agglutination reaction between cells of two mating types. While the sexual agglutination of cells of different species was not observed, mating type a cells of each species were shown to respond to alpha-factors produced by the other species. Thus, the mating response of S. globosus was shown to be identical to what has been observed in two other species of the same genera: S. cerevisiae and Saccharomyces kluyveri.  相似文献   

19.
The Closterium peracerosum–strigosum–littorale (C. psl.) complex consists of unicellular algae and is known to be composed of several reproductively isolated mating groups of heterothallic strains. Group I‐E is completely isolated from mating groups II‐A and II‐B, groups II‐A and II‐B are partially isolated from each other, and only mating‐type plus (mt+) cells of group II‐A and mating‐type minus (mt?) cells of group II‐B form zygotes. Based on the alignment of 1506 group I introns, significant phylogenetic relationships were observed among mating groups II‐A and II‐B, while mating group I‐E was distant from groups II‐A and II‐B. Sexual cell division in both mating‐type cells of group II‐A was stimulated in conditioned media in which cells of group II‐B had been cultured. When mt? cells of group II‐B were stimulated in conditioned medium derived from group II‐A, mt+ cells of group II‐B did not respond to the conditioned medium. Conditioned media derived from group I‐E did not exhibit sexual cell division (SCD)–inducing activity against any strain except those within its own group. From the alignment of deduced amino acid sequences from orthologous protoplast‐release‐inducing protein (PR‐IP) Inducer genes, we detected a significant similarity among groups II‐A and II‐B, and mating group I‐E had low similarity to other mating groups. The existing degree of reproductive isolation can be partially explained by differences in molecular structures and physiological activities of sex pheromones of these heterothallic mating groups.  相似文献   

20.
The effect of proteolytic enzymes on sexual agglutinability of haploid cells of the yeastSaccharomyces cerevisiae was examined. Sexual agglutinability of cells of botha and α types was lost on treatment with alkaline protease and two kinds of neutral proteases ofBacillus subtilis, pronase and α-chymotrypsin. Agglutinability of α type cells was lost after treatment with acid protease ofRhizopus chinensis and trypsin, but that ofa type cells was not. These results indicate that the sex-specific substance responsible for the sexual agglutination (agglutination factor) ina type cells differs from that in α type cells. Agglutination factors were solubilized from cell-wall fractions of both mating types by Glusulase treatment. These crude factors specifically inhibited the agglutinability of cells of the opposite mating type with little effect on the agglutinability of cells of the same mating type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号