首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The N-terminus of full-length RAG1, though dispensable for RAG1/2 cleavage activity, is required for efficient V(D)J recombination. This region supports RING E3 ubiquitin ligase activity in vitro, but whether full-length RAG1 functions as a single subunit or a multi-subunit E3 ligase in vivo is unclear. We show the multi-subunit cullin RING E3 ligase complex VprBP/DDB1/Cul4A/Roc1 associates with full-length RAG1 through VprBP. This complex is assembled into RAG protein-DNA complexes, and supports in-vitro ubiquitylation activity that is insensitive to RAG1 RING domain mutations. Conditional B lineage-specific VprBP disruption arrests B-cell development at the pro-B-to-pre-B cell transition, but this block is bypassed by expressing rearranged immunoglobulin transgenes. Mice with a conditional VprBP disruption show modest reduction of D-J(H) rearrangement, whereas V(H)-DJ(H) and V(κ)-J(κ) rearrangements are severely impaired. D-J(H) coding joints from VprBP-insufficent mice show longer junctional nucleotide insertions and a higher mutation frequency in D and J segments than normal. These data suggest full-length RAG1 recruits a cullin RING E3 ligase complex to ubiquitylate an unknown protein(s) to limit error-prone repair during V(D)J recombination.  相似文献   

2.
LNX is a RING finger and PDZ domain containing protein that interacts with the cell fate determinant Numb. To investigate the function of LNX, we tested its RING finger domain for ubiquitin ligase activity. The isolated RING finger domain was able to function as an E2-dependent, E3 ubiquitin ligase in vitro and mutation of a conserved cysteine residue within the RING domain abolished its activity, indicating that LNX is the first described PDZ domain-containing member of the E3 ubiquitin ligase family. We have identified Numb as a substrate of LNX E3 activity in vitro and in vivo. In addition to the RING finger, a region of LNX, including the Numb PTB domain-binding site and the first PDZ domain, is required for Numb ubiquitylation. Expression of wild-type but not mutant LNX causes proteasome-dependent degradation of Numb and can enhance Notch signalling. These results suggest that the levels of mammalian Numb protein and therefore, by extension, the processes of asymmetric cell division and cell fate determination may be regulated by ubiquitin-dependent proteolysis.  相似文献   

3.
BRCA1-BARD1 constitutes a heterodimeric RING finger complex associated through its N-terminal regions. Here we demonstrate that the BRCA1-BARD1 heterodimeric RING finger complex contains significant ubiquitin ligase activity that can be disrupted by a breast cancer-derived RING finger mutation in BRCA1. Whereas individually BRCA1 and BARD1 have very low ubiquitin ligase activities in vitro, BRCA1 combined with BARD1 exhibits dramatically higher activity. Bacterially purified RING finger domains comprising residues 1-304 of BRCA1 and residues 25-189 of BARD1 are capable of polymerizing ubiquitin. The steady-state level of transfected BRCA1 in vivo was increased by co-transfection of BARD1, and reciprocally that of transfected BARD1 was increased by BRCA1 in a dose-dependent manner. The breast cancer-derived BARD1-interaction-deficient mutant, BRCA1(C61G), does not exhibit ubiquitin ligase activity in vitro. These results suggest that the BRCA1-BARD1 complex contains a ubiquitin ligase activity that is important in prevention of breast and ovarian cancer development.  相似文献   

4.
The poxvirus p28 virulence factor is an E3 ubiquitin ligase   总被引:1,自引:0,他引:1  
A majority of the orthopoxviruses, including the variola virus that causes the dreaded smallpox disease, encode a highly conserved 28-kDa protein with a classic RING finger sequence motif (C(3)HC(4)) at their carboxyl-terminal domains. The RING domain of p28 has been shown to be a critical determinant of viral virulence for the ectromelia virus (mousepox virus) in a murine infection model (Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1994) Virology 198, 118-128). Here, we demonstrate that the p28 proteins encoded by the ectromelia virus and the variola virus possess E3 ubiquitin ligase activity in biochemical assays as well as in cultured mammalian cells. Point mutations disrupting the RING finger domain of p28 completely abolish its E3 ligase activity. In addition, p28 functions cooperatively with Ubc4 and UbcH5c, the E2 conjugating enzymes involved in 26 S proteasome degradation of protein targets. Moreover, p28 catalyzes the formation of Lys-63-linked polyubiquitin chains in the presence of Ubc13/Uev1A, a heterodimeric E2 conjugating enzyme, indicating that p28 may regulate the biological activity of its cognate viral and/or host cell target(s) by Lys-63-linked ubiquitin multimers. We thus conclude that the poxvirus p28 virulence factor is a new member of the RING finger E3 ubiquitin ligase family and has a unique polyubiquitylation activity. We propose that the E3 ligase activity of the p28 virulence factor may be targeted for therapeutic intervention against infections by the variola virus and other poxviruses.  相似文献   

5.
Cbl proteins (Cbl, Cbl-b and Cbl-c) are ubiquitin ligases that are critical regulators of tyrosine kinase signaling. In this study we identify a new Cbl-c interacting protein, Hydrogen peroxide Induced Construct 5 (Hic-5). The two proteins interact through a novel interaction mediated by the RING finger of Cbl-c and the LIM2 domain of Hic-5. Further, this interaction is mediated and dependent on specific zinc coordinating complexes within the RING finger and LIM domain. Binding of Hic-5 to Cbl-c leads to an increase in the ubiquitin ligase activity of Cbl-c once Cbl-c has been activated by Src phosphorylation or through an activating phosphomimetic mutation. In addition, co-transfection of Hic-5 with Cbl-c leads to an increase in Cbl-c mediated ubiquitination of the EGFR. These data suggest that Hic-5 enhances Cbl-c ubiquitin ligase activity once Cbl-c has been phosphorylated and activated. Interactions between heterologous RING fingers have been shown to activate E3s. This is the first demonstration of enhancement of ubiquitin ligase activity of a RING finger ubiquitin ligase by the direct interaction of a LIM zinc coordinating domain.  相似文献   

6.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.  相似文献   

7.
The baculovirus Bombyx mori nucleopolyhedrovirus (BmNPV) possesses two genes, iap1 and iap2, which encode inhibitor of apoptosis (IAP) proteins. We previously showed that although both genes are dispensable for viral propagation, iap2 is required for efficient viral propagation in cultured cells. BmNPV IAP2 contains three putative functional domains: a baculovirus IAP repeat (BIR), a BIR-like (BIRL) domain, and a RING finger domain. To identify the domain affecting viral growth, we generated a series of BmNPV bacmids expressing iap2 derivatives lacking one or two domains, or possessing a single amino acid substitution to abolish IAP2 ubiquitin ligase activity. We examined their properties in both cultured cells and B. mori larvae. We found that either the BIR or BIRL domain of IAP2 plays an important role in BmNPV infection, and that the RING finger domain, which is required for ubiquitin ligase activity, does not greatly contribute to BmNPV propagation. This is the first study to identify functional domains of the baculovirus IAP2 protein.  相似文献   

8.
RING finger protein 152 (RNF152) is a novel RING finger protein and has not been well characterized. We report here that RNF152 is a canonical RING finger protein and has E3 ligase activity. It is polyubiqitinated partly through Lys-48-linked ubiquitin chains in vivo and this phenomenon is dependent on its RING finger domain and transmembrane domain. RNF152 is localized in lysosomes and co-localized with LAMP3, a lysosome marker. Moreover, over-expression of RNF152 in Hela cells induces apoptosis. These results suggest that RNF152 is a lysosome localized E3 ligase with pro-apoptotic activities. It is the first E3 ligase identified so far that is involved in lysosome-related apoptosis.  相似文献   

9.
Herpes simplex virus type 1 regulatory protein ICP0 contains a zinc-binding RING finger and has been shown to induce the proteasome-dependent degradation of a number of cellular proteins in a RING finger-dependent manner during infection. This domain of ICP0 is also required to induce the formation of unanchored polyubiquitin chains in vitro in the presence of ubiquitin-conjugating enzymes UbcH5a and UbcH6. These data indicate that ICP0 has the potential to act as a RING finger ubiquitin ubiquitin-protein isopeptide ligase (E3) and to induce the degradation of certain cellular proteins through ubiquitination and proteasome-mediated degradation. Here we demonstrate that ICP0 is a genuine RING finger ubiquitin E3 ligase that can interact with and mediate the ubiquitination of the major oncoprotein p53 both in vitro and in vivo. Ubiquitination of p53 requires ICP0 to have an intact RING finger domain and occurs independently of its ability to bind to the ubiquitin-specific protease USP7.  相似文献   

10.
Structure of a BRCA1-BARD1 heterodimeric RING-RING complex   总被引:7,自引:0,他引:7  
The RING domain of the breast and ovarian cancer tumor suppressor BRCA1 interacts with multiple cognate proteins, including the RING protein BARD1. Proper function of the BRCA1 RING domain is critical, as evidenced by the many cancer-predisposing mutations found within this domain. We present the solution structure of the heterodimer formed between the RING domains of BRCA1 and BARD1. Comparison with the RING homodimer of the V(D)J recombination-activating protein RAG1 reveals the structural diversity of complexes formed by interactions between different RING domains. The BRCA1-BARD1 structure provides a model for its ubiquitin ligase activity, illustrates how the BRCA1 RING domain can be involved in associations with multiple protein partners and provides a framework for understanding cancer-causing mutations at the molecular level.  相似文献   

11.
The TRIM family of proteins is distinguished by its tripartite motif (TRIM). Typically, TRIM proteins contain a RING finger domain, one or two B-box domains, a coiled-coil domain and the more variable C-terminal domains. TRIM16 does not have a RING domain but does harbour two B-box domains. Here we showed that TRIM16 homodimerized through its coiled-coil domain and heterodimerized with other TRIM family members; TRIM24, Promyelocytic leukaemia (PML) protein and Midline-1 (MID1). Although, TRIM16 has no classic RING domain, three-dimensional modelling of TRIM16 suggested that its B-box domains adopts RING-like folds leading to the hypothesis that TRIM16 acts as an ubiquitin ligase. Consistent with this hypothesis, we demonstrated that TRIM16, devoid of a classical RING domain had auto-polyubiquitination activity and acted as an E3 ubiquitin ligase in vivo and in vitro assays. Thus via its unique structure, TRIM16 possesses both heterodimerization function with other TRIM proteins and also has E3 ubiquitin ligase activity.  相似文献   

12.
Recognition of the substrates by ubiquitin ligases is crucial for substrate specificity in the ubiquitin-proteasome proteolytic pathway. In the present study, we designed a double RING finger ubiquitin ligase to direct the ubiquitin machinery to a specific substrate. The engineered ligase contains the RING finger domains of both BRCA1 and BARD1 linked to a substrate recognition site PCNA, which is known to interact with cyclin-dependent kinase inhibitor p57. The double RING finger ubiquitin ligase formed a homo-oligomer complex and exhibited significant ligase activity. Co-transfection of the ligase reduced the expression of transfected p57 to the background level in a proteasome-dependent manner and restored the colony formation ability of U2OS cells that is otherwise inhibited by overexpressed p57. The results indicate the ability of the engineered double RING ubiquitin ligase to target the intended substrate. By redesigning the substrate recognition site, expression of engineered double RING ubiquitin ligases may provide a useful tool for removing many different gene products at the protein level.  相似文献   

13.
Herpes simplex virus type 1 immediate early protein ICP0 influences virus infection by inducing the degradation of specific cellular proteins via a mechanism requiring its RING finger and the ubiquitin-proteasome pathway. Many RING finger proteins, by virtue of their RING finger domain, interact with E2 ubiquitin-conjugating enzymes and act as a component of an E3 ubiquitin ligase. We have recently shown that ICP0 induces the accumulation of colocalizing, conjugated ubiquitin, suggesting that ICP0 can act as or contribute to an E3 ubiquitin ligase. In this report we demonstrate that the ICP0-related RING finger proteins encoded by other alphaherpesviruses also induce colocalizing, conjugated ubiquitin, thereby suggesting that they act by similar biochemical mechanisms.  相似文献   

14.
Mori T  Li Y  Hata H  Kochi H 《FEBS letters》2004,557(1-3):209-214
We previously reported the association of a novel Np95/ICBP90-like RING finger protein (NIRF) with a novel PEST-containing nuclear protein (PCNP). NIRF is a nuclear protein with a ubiquitin-like domain, a PHD finger, a YDG/SRA domain, Rb-binding motifs and a RING finger. In this study, we showed that NIRF has auto-ubiquitination activity, the hallmark of a ubiquitin ligase. PCNP was readily ubiquitinated in 293 and COS-7 cells, and NIRF ubiquitinated PCNP in vitro as well as in vivo. Considering that NIRF is implicated in cell cycle regulation, these findings suggest that NIRF and PCNP are a ubiquitin ligase and its substrate, respectively, and may constitute a novel signaling pathway with some relation to cell proliferation.  相似文献   

15.
Buschmann T  Fuchs SY  Lee CG  Pan ZQ  Ronai Z 《Cell》2000,101(7):753-762
Mdm2 is an E3 ubiquitin ligase for the p53 tumor suppressor protein. We demonstrate that Mdm2 is conjugated with SUMO-1 (sumoylated) at Lys-446, which is located within the RING finger domain and plays a critical role in Mdm2 self-ubiquitination. Whereas mutant Mdm2(K446R) is stabilized, it elicits increased degradation of p53 and concomitant inhibition of p53-mediated apoptosis. In vitro sumoylation of Mdm2 abrogates its self-ubiquitination and increases its ubiquitin ligase activity toward p53. Radiation caused a dose- and time-dependent decrease in the degree of Mdm2 SUMO-1 modification, which is inversely correlated with the levels of p53. Our results suggest that the maintenance of the intrinsic activity of a RING finger E3 ubiquitin ligase is sumoylation dependent and that reduced Mdm2 sumoylation in response to DNA damage contributes to p53 stability.  相似文献   

16.
Polycomb group proteins Bmi-1 and Ring1B are core subunits of the PRC1 complex, which plays important roles in the regulation of Hox gene expression, X-chromosome inactivation, tumorigenesis, and stem cell self-renewal. The RING finger protein Ring1B is an E3 ligase that participates in the ubiquitination of lysine 119 of histone H2A, and the binding of Bmi-1 stimulates the E3 ligase activity. We have mapped the regions of Bmi-1 and Ring1B required for efficient ubiquitin transfer and determined a 2.5-A structure of the Bmi-1-Ring1B core domain complex. The structure reveals that Ring1B "hugs" Bmi-1 through extensive RING domain contacts and its N-terminal tail wraps around Bmi-1. The two regions of interaction have a synergistic effect on the E3 ligase activity. Our analyses suggest a model where the Bmi-1-Ring1B complex stabilizes the interaction between the E2 enzyme and the nucleosomal substrate to allow efficient ubiquitin transfer.  相似文献   

17.
Livin promotes Smac/DIABLO degradation by ubiquitin-proteasome pathway   总被引:13,自引:0,他引:13  
Livin, a member of the inhibitor of apoptosis protein (IAP) family, encodes a protein containing a single baculoviral IAP repeat (BIR) domain and a COOH-terminal RING finger domain. It has been reported that Livin directly interacts with caspase-3 and -7 in vitro and caspase-9 in vivo via its BIR domain and is negatively regulated by Smac/DIABLO. Nonetheless, the detailed mechanism underlying its antiapoptotic function has not yet been fully characterized. In this report, we provide, for the first time, the evidence that Livin can act as an E3 ubiquitin ligase for targeting the degradation of Smac/DIABLO. Both BIR domain and RING finger domain of Livin are required for this degradation in vitro and in vivo. We also demonstrate that Livin is an unstable protein with a half-life of less than 4 h in living cells. The RING domain of Livin promotes its auto-ubiquitination, whereas the BIR domain is likely to display degradation-inhibitory activity. Mutation in the Livin BIR domain greatly enhances its instability and nullifies its binding to Smac/DIABLO, resulting in a reduced antiapoptosis inhibition. Our findings provide a novel function of Livin: it exhibits E3 ubiquitin ligase activity to degrade the pivotal apoptotic regulator Smac/DIABLO through the ubiquitin-proteasome pathway.  相似文献   

18.
RAG1 and RAG2 proteins are key components in V(D)J recombination. The core region of RAG1 is capable of catalyzing the recombination reaction; however, the biological function of non-core RAG1 remains largely unknown. Here, we show that in a murine-model carrying the RAG1 ring-finger conserved cysteine residue mutation (C325Y), V(D)J recombination was abrogated at the cleavage step, and this effect was accompanied by decreased mono-ubiquitylation of histone H3. Further analyses suggest that un-ubiquitylated histone H3 restrains RAG1 to the chromatin by interacting with the N-terminal 218 amino acids of RAG1. Our data provide evidence for a model in which ubiquitylation of histone H3 mediated by the ring-finger domain of RAG1 triggers the release of RAG1, thus allowing its transition into the cleavage phase. Collectively, our findings reveal that the non-core region of RAG1 facilitates chromosomal V(D)J recombination in a ubiquitylation-dependent pathway.  相似文献   

19.
Arabidopsis COP1 is a negative regulator of photomorphogenesis, which targets HY5, a positive regulator of photomorphogenesis, for degradation via the proteasome pathway in the absence of light. COP1 and its interactive partner CIP8 both possess RING finger motifs, characteristic of some E3 ubiquitin ligases. Here we show that CIP8 promotes ubiquitin attachment to HY5 in E2-dependent fashion in vitro. CIP8 exhibits a strong interaction with the E2 enzyme AtUBC8 through its N-terminal domain. Phosphorylation of HY5 by casein kinase II requires the beta subunit 2, but does not affect HY5's susceptibility to ubiquitination. The RING domain of CIP8 is required but is not sufficient for ubiquitin ligase activity. Although the RING domain of CIP8 interacts with the RING domain of COP1, addition of recombinant COP1 fails to affect CIP8's ubiquitin ligase activity towards HY5 in vitro. However, recombinant COP1 can pull-down native CIP8 from the extract of dark-grown seedlings, but not from the extract of light-grown seedlings in a column-binding assay, implying a requirement for light-regulated modification in vivo. Our data suggest that CIP8 can form a minimal ubiquitin ligase in co-operation with the E2 enzyme AtUBC8. It is possible that the AtUBC8-CIP8 module might interact with COP1 in vivo, thereby participating in proteasome-mediated degradation of HY5.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号