首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comet, TUNEL, and annexin V assays were used to identify DNA fragmentation and plasma membrane alterations occurring during staurosporine-induced apoptosis in Chinese hamster ovary cells. TUNEL assay detected apoptotic cells after 6 h treatment. The occurrence of annexin V immunofluorescence staining after 1 h treatment confirms that exposure of phosphatidylserine (PS) residues is an early biochemical feature of apoptosis. According to intensity, three annexin staining patterns were distinguished, related to different steps in the apoptotic process. The detection of highly damaged cells by the comet assay after 3 h treatment occurred earlier than the detection of DNA modifications by the TUNEL assay, but later than the exposure of PS residues. However, late apoptotic cells, otherwise characterized by plasma membrane disruption and high annexin V staining, were not detected by the comet assay. In this case, comet assay modified by omitting electrophoresis (halo assay) was more sensitive for an accurate quantification of the apoptotic fraction. Accepted: 2 June 1999  相似文献   

2.
Multimodal proteins, or proteins labeled with both fluorescent and magnetic reporter groups, can be used in a wide range of applications including FACS or fluorescence microscopy, MRI and or near-infrared based optical imaging, or to fractionate cells by magnetic cell sorting. A problem with multimodal proteins, however, is the need to maximize bioactivity, often achieved by minimizing the number of modification points of the protein, while attaching fluorescent and magnetic labels. Here we describe the synthesis of a magneto/optical form of annexin V, achieved by reacting the amino-CLIO nanoparticle with Cy5.5 and SPDP, to produce a fluorescent, sulfhydryl reactive nanoparticle. A single reactive sulfhydryl group was added to annexin V by reaction with SATA that preserved the protein's ability to bind apoptotic Jurkat T cells. Reacting SATAylated annexin V with an SPDP activated nanoparticle yielded Anx-CLIO-Cy5.5, a magneto/optical form of annexin V. The binding of Anx-CLIO-Cy5.5 was specific for apoptotic Jurkat T cells and had an EC(50) of 3.66 nM. This was comparable to the strength of the interaction of unmodified annexin V with apoptotic cells, measured as the displacement of FITC-annexin by annexin V (2.4 nM). Our conjugation strategy preserves the strength of the interaction between annexin V and apoptotic cells, while yielding a probe, Anx-CLIO-Cy5.5, that is readily detectable by standard MR imaging or NIRF optical methods.  相似文献   

3.
BACKGROUND: Following a lethal injury, two modes of cell death can be distinguished, apoptosis and primary necrosis. Cells pass through a prelethal stage characterized by a preservation of membrane integrity, in which they shrink (apoptosis) or swell (oncosis, the early phase of primary necrosis). During apoptosis, a loss of phospholipid asymmetry leads to exposure of phosphatidylserine (PS) residues on the outer leaflet of the plasma membrane. We examined whether the external PS exposure, initially supposed to be specific for apoptosis, was also observed in oncotic cells. METHODS: Human peripheral lymphocytes, Jurkat T cells, U937 cells, or HeLa cells were submitted to either apoptotic or oncotic stimuli. PS external exposure was assessed after binding of FITC-conjugated annexin V as was the loss of membrane integrity after propidium iodide (PI) uptake. Morphological examination was performed by optical or electron microscopy. RESULTS: Similarly to apoptotic cells, oncotic cells expose external PS residues while preserving membrane integrity. Consequently, oncotic cells exhibit the annexin V+ PI- phenotype, previously considered to be specific for apoptotic cells. CONCLUSIONS: This study concludes that the annexin V/PI assay does not discriminate between apoptosis and oncosis and that it can be a useful tool to study oncosis by flow cytometry.  相似文献   

4.
Cells generally maintain an asymmetric distribution of phospholipids across the plasma membrane bilayer, restricting the phospholipid, phosphatidylserine (PS), to the inner leaflet of the plasma membrane. When cells undergo apoptosis, this asymmetric transbilayer distribution is lost, bringing PS to the surface where it acts as a signal for engulfment by phagocytes. The fluorescent dye merocyanine 540 specifically stains the plasma membrane of apoptotic cells which have lost their asymmetric distribution of phospholipids. However, it also stains non-apoptotic macrophages, suggesting that phospholipid asymmetry may not be maintained in these cells, and thus that they may express PS on their surface. Here, the PS-binding protein, annexin V, was used to show that in fact normal macrophages do express PS on their surface. Furthermore, pre-treating macrophages with annexin V was found to inhibit phagocytosis of apoptotic thymocytes and thymocytes on which PS expression was artificially induced, but did not inhibit phagocytosis of latex beads or Fc receptor-mediated phagocytosis of opsonized erythrocytes. These results indicate that PS is constitutively expressed on the surface of macrophages and is functionally significant for the phagocytosis of PS-expressing target cells.  相似文献   

5.
The translocation of phospholipids across the plasma membrane has been widely documented as one of the earliest measurable biochemical events of apoptosis. Using fluorescently labelled annexin V, which preferentially binds phosphatidylserine (PS) in the presence of Ca2+, the externalization of PS can be measured and apoptosis quantified using flow cytometry. Conventional detection methods utilizing annexin V, while faster than in situ DNA end-labelling or DNA laddering, require extensive sample preparation which may compromise samples and makes rapid, high volume screening prohibitive. This paper describes a novel assay for the measurement of apoptosis based upon binding of radiolabelled annexin V to apoptotic cells attached to the growth surface of a 96-well scintillating microplate (Cytostar-T®). We compared measurements of apoptosis made by flow cytometry to those obtained with the scintillating microplate in three model systems, treatment of: mouse connective tissue (L-M) cells with lymphotoxin (LT), human lung carcinoma (H460) cells with Apo-2 ligand and human umbilical vein endothelial (HUVE) cells with staurosporine. In this assay, we compare both direct and indirect labelling methods by utilizing either iodinated annexin V or biotinylated annexin V/[35S] streptavidin to radiolabel apoptotic cells. The signal detected is a direct consequence of the binding of annexin V to externalized PS on apoptotic cells and the proximity of the label to the base of the plate. Using this method, separation of bound and unbound radiolabel signal occurs directly within the well resulting in a sensitive assay that requires minimal manipulation and can accomodate a large number of samples.  相似文献   

6.
Many differentiating spermatogenic cells die by apoptosis during the process of mammalian spermatogenesis. However, very few apoptotic spermatogenic cells are detected by histological examination of the testis, probably due to the rapid elimination of dying cells by phagocytosis. Previous in vitro studies showed that Sertoli cells selectively phagocytose dying spermatogenic cells by recognizing the membrane phospholipid phosphatidylserine (PS), which is exposed to the surface of spermatogenic cells during apoptosis. We examined here whether PS-mediated phagocytosis of apoptotic spermatogenic cells occurs in vivo. For this purpose, the PS-binding protein annexin V was microinjected into the seminiferous tubules of normal live mice, and their testes were examined. The injection of annexin V caused no histological changes in the testis, but significantly increased the number of apoptotic spermatogenic cells as assessed by the terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling assay. The number of Sertoli cells did not change in the annexin V-injected testes, and annexin V itself did not induce apoptosis in primary cultured spermatogenic cells. These results indicate that annexin V inhibited the phagocytic clearance of apoptotic spermatogenic cells and suggest that PS-mediated phagocytosis of those cells occurs in vivo. Furthermore, the injection of annexin V into the seminiferous tubules brought about a significant reduction in the number of spermatogenic cells and epididymal sperm in anticancer drug-treated mice. This suggests that the elimination of apoptotic spermatogenic cells is required for the production of sperm.  相似文献   

7.
BACKGROUND: Phosphatidylserine (PS) appears on the outer membrane leaflet of cells undergoing programmed cell death and marks those cells for clearance by macrophages. Macrophages secrete lactadherin, a PS-binding protein, which tethers apoptotic cells to macrophage integrins. METHODS: We utilized fluorescein-labeled lactadherin together with the benchmark PS Probe, annexin V, to detect PS exposure by flow cytometry and confocal microscopy. Immortalized leukemia cells were treated with etoposide, and the kinetics and topology of PS exposure were followed over the course of apoptosis. RESULTS: Costaining etoposide-treated leukemoid cells with lactadherin and annexin V indicated progressive PS exposure with dim, intermediate, and bright staining. Confocal microscopy revealed localized plasma membrane staining, then diffuse dim staining by lactadherin prior to bright generalized staining with both proteins. Annexin V was primarily localized to internal cell bodies at early stages but stained the plasma membrane at the late stage. Calibration studies suggested a PS content less, less than or approximately equal to 2.5%-8% for the membrane domains that stained with lactadherin but not annexin V. CONCLUSIONS: Macrophages may utilize lactadherin to detect PS exposure prior to exposure of sufficient PS to bind annexin V. The methodology enables detection of PS exposure at earlier stages than established methodology.  相似文献   

8.
The role of surfactant protein A (SP-A) in the recognition and clearance of apoptotic cells is well established, but to date, it is still not clear which surface molecules of apoptotic cells are involved in the process. Here we present evidence that phosphatidylserine (PS) is a relevant binding molecule for human SP-A. The binding is Ca2+-dependent and is not inhibited by mannose, suggesting that the sugar-binding site of the carbohydrate recognition domain (CRD) of SP-A is not involved. Flow cytometry studies on apoptotic Jurkat cells revealed apparent inhibition of annexin V binding by increasing concentrations of SP-A in late apoptotic but not early apoptotic cells, and this was consistent for Jurkat cells and neutrophils. Supporting these data, confocal microscopy results show a co-localisation of annexin V and SP-A in late apoptotic but not early apoptotic cells. However, we cannot conclude that this inhibition is exclusively due to the binding of SP-A to PS on the cell surface, as annexin V is not wholly specific for PS and SP-A also interacts with other phospholipids that might become exposed on the apoptotic cell surface.  相似文献   

9.
Dramatic changes in the structure of cell membranes on apoptosis allow easy, sensitive and non-destructive analysis of this process with the application of fluorescence methods. The strong plasma membrane asymmetry is present in living cells, and its loss on apoptosis is commonly detected with the probes interacting strongly and specifically with phosphatidylserine (PS). This phospholipid becomes exposed to the cell surface, and the application of annexin V labeled with fluorescent dye is presently the most popular tool for its detection. Several methods have been suggested recently that offer important advantages over annexin V assay with the ability to study apoptosis by spectroscopy of cell suspensions, flow cytometry and confocal or two-photon microscopy. The PS exposure marks the integrated changes in the outer leaflet of cell membrane that involve electrostatic potential and hydration, and the attempts are being made to provide direct probing of these changes. This review describes the basic mechanisms underlying the loss of membrane asymmetry during apoptosis and discusses, in comparison with the annexin V-binding assay, the novel fluorescence techniques of detecting apoptosis on cellular membrane level. In more detail we describe the detection method based on smart fluorescent dye F2N12S incorporated into outer leaflet of cell membrane and reporting on apoptotic cell transformation by easily detectable change of the spectral distribution of fluorescent emission. It can be adapted to any assay format.  相似文献   

10.
Apoptosis, an active process of cell self-destruction, is associated with myocardial ischemia. The redistribution of phosphatidylserine (PS) from the inner to the outer leaflet of the cell membrane is an early event in apoptosis. Annexin V, a protein with high specificity and tight binding to PS, was used to identify and localize apoptosis in the ischemic heart.Fluorescein-labeled annexin V has been used routinely for the assessment of apoptosis in vitro. For the detection of apoptosis in vivo, positron emission tomography and single-photon emission computed tomography have been shown to be suitable tools. In view of the relatively low spatial resolution of nuclear imaging techniques, we developed a high-resolution contrast-enhanced magnetic resonance imaging (MRI) method that allows rapid and noninvasive monitoring of apoptosis in intact organs. Instead of employing superparamagnetic iron oxide particles linked to annexin V, a new T1 contrast agent was used. To this effect, annexin V was linked to gadolinium diethylenetriamine pentaacetate (Gd-DTPA)-coated liposomes.The left coronary artery of perfused isolated rat hearts was ligated for 30 min followed by reperfusion. T(1) and T(2)* images were acquired by using an 11.7-T magnet before and after intracoronary injection of Gd-DTP-labeled annexin V to visualize apoptotic cells. A significant increase in signal intensity was visible in those regions containing cardiomyocytes in the early stage of apoptosis. Because labeling of early apoptotic cell death in intact organs by histological and immunohistochemical methods remains challenging, the use of Gd-DTPA-labeled annexin V in MRI is clearly an improvement in rapid targeting of apoptotic cells in the ischemic and reperfused myocardium.  相似文献   

11.
Advances in cytochemical methods for detection of apoptosis.   总被引:8,自引:0,他引:8  
In an earlier article from this laboratory, the current methods developed to detect apoptosis in cells and tissues were highlighted, along with the challenges in their interpretation. Recent discoveries concerning the underlying biochemical mechanisms of apoptotic effector pathways have made possible further assays that allow a more direct measure of the activation of the apoptotic machinery in cells. This article summarizes some of these newer methods and extends the interpretation of the more classical assays of apoptosis in a defined cell system. We present data in KB and PC3 cell model culture systems induced to undergo apoptosis by the plant toxin ricin. Using a modified in situ nick translation assay (ISNT) with either Bodipy or BUdR labeling, we confirm that most cells showing altered nuclear morphology do not show reactivity with this assay until very late in the apoptotic process. We also show that only a minority of cells label with fluorescent annexin V during apoptosis but that apoptotic cells continue to internalize material from the cell surface through endocytosis after becoming reactive with annexin V. In addition, we describe the utility of a prototype of new assays for caspase substrate cleavage products, the detection of cleaved cytokeratin 18. It is these newer cleavage product assays that perhaps hold the greatest promise for specific detection of apoptosis in cells either in cell culture or in intact tissues. (J Histochem Cytochem 49:821-832, 2001)  相似文献   

12.
BACKGROUND: An early sign of apoptosis in many cells is the appearance of phosphatidylserine (PS) on the outside of the plasma membrane, whilst the cells still retain the ability to exclude DNA-binding molecules such as propidium iodide and 7-aminoactinomycin D (7-AAD). The protein annexin V binds preferentially to PS and has often been used to monitor the early phase of apoptosis. There have been some conflicting results concerning whether annexin V binds to camptothecin (CAM)-treated HL-60 cells, a commonly used model for apoptosis. We investigated the effects of culturing HL-60 cells for up to 8 h with a range of CAM concentrations. METHODS: We used flow cytometry to measure cellular light scatter, annexin V-FITC binding, and 7-AAD uptake, and DNA content after fixation and permeabilization. We also used microscopy to examine the morphology of cells (both unsorted and sorted according to their light scatter) after cytocentrifugation. RESULTS: We found that CAM caused the rapid appearance of low light scatter apoptotic bodies. Even among cells with "normal" light scatter, there was widespread DNA cleavage and nuclear fragmentation by 3 h. The percentage of apoptotic bodies peaked at about 4 h and it was only afterward that annexin V binding could be detected to both intact cells and to apoptotic bodies. When they first appeared, the intact annexin V+ cells had S-phase DNA content. CONCLUSIONS: During CAM-induced apoptosis of HL-60 cells, the external exposure of PS can either precede or follow DNA cleavage, which suggests that PS exposure is not always an indicator of early apoptosis.  相似文献   

13.
Inhibition of protein kinase C by annexin V.   总被引:11,自引:0,他引:11  
Annexin V is a protein of unknown biological function that undergoes Ca(2+)-dependent binding to phospholipids located on the cytosolic face of the plasma membrane. Preliminary results presented herein suggest that a biological function of annexin V is the inhibition of protein kinase C (PKC). In vitro assays showed that annexin V was a specific high-affinity inhibitor of PKC-mediated phosphorylation of annexin I and myosin light chain kinase substrates, with half-maximal inhibition occurring at approximately 0.4 microM. Annexin V did not inhibit epidermal growth factor receptor/kinase phosphorylation of annexin I or cAMP-dependent protein kinase phosphorylation of the Kemptide peptide substrate. Since annexin V purified from both human placenta and recombinant bacteria inhibited protein kinase C activity, it is not likely that the inhibitor activity was associated with a minor contaminant of the preparations. The following results indicated that the mechanism of inhibition did not involve annexin V sequestration of phospholipid that was required for protein kinase C activation: similar inhibition curves were observed as phospholipid concentration was varied from 0 to 800 micrograms/mL; the extent of inhibition was not significantly affected by the order of addition of phospholipid, substrate, or PKC, and the core domain of annexin I was not a high-affinity inhibitor of PKC even though it had similar Ca2+ and phospholipid binding properties as annexin V. These data indirectly indicate that inhibition occurred by direct interaction between annexin V and PKC. Since the concentration of annexin V in many cell types exceeds the amounts required to achieve PKC inhibition in vitro, it is possible that annexin V inhibits PKC in a biologically significant manner in intact cells.  相似文献   

14.
 The behaviour of plasma membrane was studied in UV-treated cells to investigate its involvement in apoptosis. It was studied in HL60 cells, in which DNA oligonucleosomic cleavage occurs, and in Molt-4 cells, which are characterised by a different fragmentation pattern. During the early stages of apoptosis, a membrane lipid rearrangement occurs, which involves phosphatidylserine translocation from the inner to the outer leaflet. This molecular alteration was investigated by annexin V-FITC binding, analysed by flow cytometry and confocal microscopy. It was correlated with transmission electron microscopy, subdiploid peak appearance and DNA fragmentation. Our data indicate that the plasma membrane represents an early apoptotic target, even if its alterations are not detectable by ultrastructural analysis, which indicates its good preservation until late apoptotic stages. In addition, the study of apoptotic cells with absent or inactivated endonuclease demonstrates the independence of this membrane mechanism from nuclear activity. Accepted: 16 April 1998  相似文献   

15.
One of the early events occurring at the cell membrane during apoptosis is the translocation of phosphatidylserine from the inner side of the plasma membrane to the outer layer. These phosphatidylserine groups can be bound by fluorescein isothiocyanate (FITC)-labelled annexin V. The aim of this study was to evaluate the power of the annexin V flow cytometric assay in detecting apoptosis in gamma irradiated peripheral blood lymphocytes and in differentiating between apoptosis and primary necrosis in these cells. Therefore, 5 Gy and 20 Gy gamma irradiated peripheral blood mononuclear cells (PBMCs) were examined after a 24-h culture period. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) technique was performed as well. A comparison with an electron microscopic (EM) evaluation was made. EM is based on established morphological criteria allowing the classification of cells into four groups: viable, early apoptotic, secondary necrotic and primary necrotic cells. EM performed on annexin V positive sorted cells proved that a 5 Gy gamma irradiation of PBMCs mainly causes apoptosis, whereas a 20 Gy gamma irradiation mainly induces primary necrosis. Neither the annexin V flow cytometric assay nor the TUNEL assay were able to distinguish between primary and secondary necrotic cells. These results illustrate that if quantification of apoptosis is required, one should be careful in interpreting flow cytometric results obtained by annexin V or TUNEL staining in peripheral blood lymphocytes. Although in general primary necrotic cells show an increased forward scatter due to cellullar swelling, both early apoptotic and necrotic (primary or secondary) lymphocytes show a decreased forward scatter signal. Moreover, both primary and secondary necrotic lymphocytes are annexin V and propidium iodide (PI) positive and therefore indistinguishable. We conclude that if a new experiment focusing on apoptosis is set up, an initial EM evaluation is mandatory. If EM shows that the apoptosis inducing agent used in the design of the experiments is not causing primary necrosis, than the annexin V flow cytometric assay can provide rapid and quantitative information about apoptosis.  相似文献   

16.
Bovine lactadherin holds a stereo-specific affinity for phosphatidylserine (PS) membrane domains and binds at PS concentrations lower than the benchmark PS probe, annexin V. Accordingly, lactadherin has recognized PS exposure on preapoptotic immortalized leukemia cells at an earlier time point than has annexin V. In the present study, the cervical cancer cell line HeLa has been employed as a model system to compare the topographic distribution of PS with the two PS binding proteins as adherent cells enter the apoptotic program. HeLa cells were cultured on glass-bottom Petri dishes, and apoptosis was induced by staurosporine. Fluorescence-labeled lactadherin and/or annexin V were used to detect PS exposure by confocal microscopy. Both lactadherin and annexin V staining revealed PS localized to plasma membrane rim and blebs. In addition, lactadherin identified PS exposure on long filopodia-like extensions, whereas annexin V internalized in granule-like structures. All in all, the data further delineate the differences in PS binding patterns of lactadherin and annexin V. (J Histochem Cytochem 57:907–914, 2009)  相似文献   

17.
The nuclear pore membrane protein POM121 is specifically degraded during apoptosis by a caspase-3-dependent process enabling early detection of apoptosis in living cells expressing POM121-GFP. Here we further investigated temporal aspects of apoptotic degradation of POM121-GFP. We demonstrate that decreased POM121-GFP fluorescence precedes annexin V-labelling of apoptotic cells. This indicates that degradation of the nuclear pore complex starts prior to redistribution of plasma membrane phosphatidylserine, which serves as a signal for phagocytotic elimination of apoptotic cells. Furthermore, a caspase-resistant GFP-labelled mutant of POM121 resisted degradation even in late apoptosis and was detected in clustered nuclear pores. Thus, it can be concluded that loss of POM121-GFP is a specific sensor of the activation of caspase-3-dependent proteolysis at the nuclear pores.  相似文献   

18.
In normal healthy cells phosphatidylserine is located in the inner leaflet of the plasma membrane. However, on activated platelets, dying cells and under specific circumstances also on various types of viable leukocytes phosphatidylserine is actively externalized to the outer leaflet of the plasma membrane. Annexin A5 has the ability to bind in a calcium-dependent manner to phosphatidylserine and to form a membrane-bound two-dimensional crystal lattice. Based on these abilities various functions for extracellular annexin A5 on the phosphatidylserine-expressing plasma membrane have been proposed. In this review we describe possible mechanisms for externalization of annexin A5 and various processes in which extracellular annexin A5 may play a role such as blood coagulation, apoptosis, phagocytosis and formation of plasma membrane-derived microparticles. We further highlight the recent discovery of internalization of extracellular annexin A5 by phosphatidylserine-expressing cells.  相似文献   

19.
This study describes the use of biotinylated annexin V for the histochemical detection of apoptotic cells in cultured chicken embryos during gastrulation. This method is based on the Ca2+-dependent binding of annexin V to phosphatidylserine, a negatively charged phospholipid, located at the inner leaflet of the cell membrane in living cells. However, in the early stages of apoptosis, phosphatidylserine is translocated to the outer layer of the cell membrane and can then be recognized by annexin V. Applying this method in cultured chicken embryos during gastrulation, we obtained labelling of apoptotic cells in the three germ layers. In the epiblast and mesoblast, labelling was predominantly present in the region lateral to the primitive streak. At the level of the germinal crescent, labelled cells were also found in the epiblast. Labelled cells in the deep layer, which is a heterogeneous tissue layer composed of endophyll, sickle endoblast and definitive endobl ast, were rather scarce. The distribution of cells, as observed in this study after labelling with annexin V in light microscopy and confocal laser scanning microscopy, is consistent with distributions reported by other authors using other approaches and with our previous observations made with the TUNEL technique and by electron microscopy after fixation in a tannic acid-based fixative. The main advantages of this method over other more sophisticated methods is its easiness and rapidity of execution and the fact that both early and late stages of apoptosis are detected. © 1998 Chapman & Hall  相似文献   

20.
In the early stages of apoptosis, phosphatidylserine (PS) is translocated from the inner side of the plasma membrane to the outer layer, which allows phagocytes to recognize and engulf the apoptotic cells. In this study we have analyzed the cell surface exposure of phosphatidylethanolamine (PE) in apoptotic CTLL-2 cells, a cytotoxic T cell line, using a tetracyclic polypeptide of 19 amino acids (Ro09-0198) which specifically recognizes the structure of PE and forms a tight equimolar complex with the phospholipid. Fluorescence microscopic analysis showed that the peptide, conjugated with fluorescence-labeled streptavidin (FL-SA-Ro), bound effectively to the cell surface of cells undergoing apoptosis in response to withdrawal of interleukin-2 from the culture media, but not to nonapoptotic cells. The binding of FL-SA-Ro to apoptotic cells was not uniform and the intense staining was observed on surface blebs of apoptotic cells. The FL-SA-Ro binding was inhibited specifically by liposomes containing PE, suggesting that PE is mainly exposed on the surface blebs of apoptotic cells. The specific binding of FL-SA-Ro to the apoptotic cells was also confirmed using a fluorescence-activated cell sorter and the time-dependent cell surface exposure of PE correlated well with the exposure of PS, as detected by the binding of annexin V. This study provides the first direct evidence that PE as well as PS is exposed on the cell surface during the early stages of apoptosis, resulting in the total loss of asymmetric distribution of aminophospholipids in the plasma membrane bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号