首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jing X  Cerveny M  Yang K  He B 《Journal of virology》2004,78(14):7653-7666
The ability of the gamma(1)34.5 protein to suppress the PKR response plays a crucial role in herpes simplex virus pathogenesis. In this process, the gamma(1)34.5 protein associates with protein phosphatase 1 to form a large complex that dephosphorylates eIF-2alpha and thereby prevents translation shutoff mediated by PKR. Accordingly, gamma(1)34.5 null mutants are virulent in PKR-knockout mice but not in wild-type mice. However, gamma(1)34.5 deletion mutants, with an extragenic compensatory mutation, inhibit PKR activity but remain avirulent, suggesting that the gamma(1)34.5 protein has additional functions. Here, we show that a substitution of the gamma(1)34.5 gene with the NS1 gene from influenza A virus renders viral resistance to interferon involving PKR. The virus replicates as efficiently as wild-type virus in SK-N-SH and CV-1 cells. However, in mouse 3T6 cells, the virus expressing the NS1 protein grows at an intermediate level between the wild-type virus and the gamma(1)34.5 deletion mutant. This decrease in growth, compared to that of the wild-type virus, is due not to an inhibition of viral protein synthesis but rather to a block in virus release or egress. Virus particles are predominantly present in the nucleus and cytoplasm. Notably, deletions in the amino terminus of the gamma(1)34.5 protein lead to a significant decrease in virus growth in mouse 3T6 cells, which is independent of eIF-2alpha dephosphorylation. In correlation, a series of deletions in the amino-terminal domain impair nuclear as well as cytoplasmic egress. These results indicate that efficient viral replication depends on the gamma(1)34.5 functions required to prevent the PKR response and to facilitate virus egress in the different stages during virus infection.  相似文献   

2.
Multiple herpes simplex virus type 1 functions control translation by regulating phosphorylation of the initiation factor eIF2 on its alpha subunit. Both of the two known regulators, the gamma(1)34.5 and Us11 gene products, are produced late in the viral life cycle, although the gamma(1)34.5 gene is expressed prior to the gamma(2) Us11 gene, as gamma(2) genes require viral DNA replication for their expression while gamma(1) genes do not. The gamma(1)34.5 protein, through a GADD34-related domain, binds a cellular phosphatase (PP1alpha), maintaining pools of active, unphosphorylated eIF2. Infection of a variety of cultured cells with a gamma(1)34.5 mutant virus results in the accumulation of phosphorylated eIF2alpha and the inhibition of translation prior to the completion of the viral lytic program. Ectopic, immediate-early Us11 expression prevents eIF2alpha phosphorylation and the inhibition of translation observed in cells infected with a gamma(1)34.5 mutant by inhibiting activation of the cellular kinase PKR and the subsequent phosphorylation of eIF2alpha; however, a requirement for the Us11 protein, produced in its natural context as a gamma(2) polypeptide, remains to be demonstrated. To determine if Us11 regulates late translation, we generated two Us11 null viruses. In cells infected with a Us11 mutant, elevated levels of activated PKR and phosphorylated eIF2alpha were detected, viral translation rates were reduced 6- to 7-fold, and viral replication was reduced 13-fold compared to replication in cells infected with either wild-type virus or a virus in which the Us11 mutation was repaired. This establishes that the Us11 protein is critical for proper late translation rates. Moreover, it demonstrates that the shutoff of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus, previously ascribed solely to the gamma(1)34.5 mutation, actually results from the combined loss of gamma(1)34.5 and Us11 functions, as the gamma(2) Us11 mRNA is not translated in cells infected with a gamma(1)34.5 mutant.  相似文献   

3.
Earlier studies have shown that infection of human cells by herpes simplex virus 1 (HSV-1) results in the activation of RNA-dependent protein kinase (PKR) but that the alpha subunit of eIF-2 is not phosphorylated and that protein synthesis is unaffected. In the absence of the viral gamma(1)34.5 gene, eIF-2alpha is phosphorylated and protein synthesis is prematurely shut off (J. Chou, J. J. Chen, M. Gross, and B. Roizman, Proc. Natl. Acad. Sci. USA 92:10516-10520, 1995). A second recent paper reported the selection of second-site suppressor mutants characterized by near-wild-type protein synthesis in cells infected with gamma(1)34.5- mutants (I. Mohr and Y. Gluzman, EMBO J. 15:4759-4766, 1996). Here, we report the properties of the spontaneous HSV-1 suppressor mutant Sup-1, which is characterized by spontaneous deletion of 503 bp encompassing the domain of the alpha47 gene and junction with the inverted repeats flanking the unique short (U(S)) sequence of the HSV-1 DNA resulting in the juxtaposition of the alpha47 promoter to the coding domain of the U(S)11 gene. This mutant does not exhibit the shutoff of protein synthesis characteristic of the gamma(1)34.5- virus. Specifically, Sup-1 in SK-N-SH human neuroblastoma cells (i) did not exhibit the function of the alpha47 gene characterized by a reduction in the transport of peptides across the endoplasmic reticulum of permealized cells consistent with the absence of alpha47 gene sequences, (ii) accumulated U(S)11 protein at levels analogous to those of the wild-type parent but the protein was made at earlier times after infection, as would be expected from a change in the promoter, and (iii) activated PKR like that of the parent, gamma(1)34.5- virus, but (iv) did not cause premature shutoff of protein synthesis and therefore was similar to the wild-type parent virus rather than the gamma(1)34.5- virus from which it was derived. We conclude that the mechanism by which Sup-1 blocks the shutoff of protein synthesis associated with phosphorylation of eIF-2alpha by the activated PKR is not readily explainable by a secondary mutation characterized by a deletion.  相似文献   

4.
I Mohr  Y Gluzman 《The EMBO journal》1996,15(17):4759-4766
Novel suppressor variants of conditionally lethal HSV-1 gamma34.5 deletion mutants have been isolated which exhibit restored ability to grow on neoplastic neuronal cells. Deletion of the viral gamma34.5 genes, whose products share functional similarity with the cellular GADD34 gene, renders the virus non-neurovirulent and imposes a block to viral replication in neuronal cells. Protein synthesis ceases at late times post-infection and the translation initiation factor eIF2alpha is phosphorylated by the cellular PKR kinase [Chou et al. (1990) Science, 252, 1262-1266; (1995) Proc. Natl Acad. Sci. USA, 92, 10516-10520]. The suppressor mutants have overcome the translational block imposed by PKR. Multiple, independent isolates all contain rearrangements within a 595 bp element in the HSV-1 genome where the unique short component joins the terminal repeats. This alteration, which affects the production of the viral mRNA and protein from the Us11 and Us12 genes, is both necessary and sufficient to confer the suppressor phenotype on gamma34.5 mutant viruses. HSV-1 thus encodes a specific element which inhibits ongoing protein synthesis in the absence of the viral GADD34-like function. Since this inhibition involves the accumulation of phosphorylated eIF2alpha, the element identified by the suppressor mutations may be a discrete PKR activator. Activation of the PKR kinase thus does not proceed through a general, cellular 'antiviral' sensing mechanism. Instead, the virus deliberately activates PKR and encodes a separate function which selectively prevents the phosphorylation of at least one PKR target, eIF2alpha. The nature of this potential activator element, and how analogous cellular elements could affect PKR pathways which affect growth arrest and differentiation are discussed.  相似文献   

5.
The highly structured 5' untranslated region (5' UTR) of Theiler's murine encephalomyelitis virus is involved in cap-independent translation of the viral RNA. Previously, we reported that the bicistronic mRNA chloramphenicol acetyltransferase-5' UTR-luciferase (Luc) efficiently expressed Luc both in a rabbit reticulocyte lysate and when transfected into BHK-21 cells. Insertion of 3 nucleotides at position 665 in the 5' UTR of this bicistronic mRNA resulted in greatly reduced Luc expression in BHK-21 cells but had little effect on expression of Luc in rabbit reticulocyte lysate. This mutation was also introduced into a virulent Theiler's murine encephalomyelitis virus chimera, Chi-VL. The kinetics of viral RNA and protein synthesis and virus production in BHK-21 cells were slower for the mutant chimera [Chi-VL(IN668)] than for Chi-VL; however, the final virus yields were comparable. Intracerebral inoculation of mice with the chimeras revealed that Chi-VL(IN668) was completely attenuated in neurovirulence. The reduced neurovirulence of Chi-VL(IN668) may be ascribed to its reduced growth in the central nervous system, most likely due to an impaired ability to synthesize viral proteins.  相似文献   

6.
In animal models of herpes simplex virus type 1 (HSV-1) infection, ICP34.5-null viruses are avirulent and also fail to grow in a variety of cultured cells due to their inability to prevent RNA-dependent protein kinase (PKR)-mediated inhibition of protein synthesis. We show here that the inability of ICP34.5 mutants to grow in vitro is due specifically to the accumulation of phosphorylated eIF2 alpha. Mutations suppressing the in vitro phenotype of ICP34.5-null mutants have been described which map to the unique short region of the HSV-1 genome, resulting in dysregulated expression of the US11 gene. Despite the inability of the suppressor mutation to suppress the avirulent phenotype of the ICP34.5-null parental virus following intracranial inoculation, the suppressor mutation enhanced virus growth in the cornea, trigeminal ganglia, and periocular skin following corneal infection compared to that with the ICP34.5-null virus. The phosphorylation state of eIF2 alpha following in vitro infection with the suppressor virus was examined to determine if in vivo differences could be attributed to differential regulation of eIF2 alpha phosphorylation. The suppressor virus prevented accumulation of phosphorylated eIF2 alpha, while the wild-type virus substantially reduced eIF2 alpha phosphorylation levels. These data suggest that US11 functions as a PKR antagonist in vivo, although its activity may be modulated by tissue-specific differences in translation regulation.  相似文献   

7.
Autophagy is postulated to play a role in antiviral innate immunity. However, it is unknown whether viral evasion of autophagy is important in disease pathogenesis. Here we show that the herpes simplex virus type 1 (HSV-1)-encoded neurovirulence protein ICP34.5 binds to the mammalian autophagy protein Beclin 1 and inhibits its autophagy function. A mutant HSV-1 virus lacking the Beclin 1-binding domain of ICP34.5 fails to inhibit autophagy in neurons and demonstrates impaired ability to cause lethal encephalitis in mice. The neurovirulence of this Beclin 1-binding mutant virus is restored in pkr(-/-) mice. Thus, ICP34.5-mediated antagonism of the autophagy function of Beclin 1 is essential for viral neurovirulence, and the antiviral signaling molecule PKR lies genetically upstream of Beclin 1 in host defense against HSV-1. Our findings suggest that autophagy inhibition is a novel molecular mechanism by which viruses evade innate immunity and cause fatal disease.  相似文献   

8.
Earlier studies have shown that herpes simplex virus type 1 (HSV-1) activated protein kinase R (PKR) but that the product of the product of the gamma(1)34.5 gene binds and redirects the host phosphatase 1 to dephosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). In consequence, the gamma(1)34.5 gene product averts the threatened shutoff of protein synthesis caused by activated PKR. Serial passages of Deltagamma(1)34.5 mutants in human cells led to isolation of two classes of second-site, compensatory mutants. The first, reported earlier, resulted from the juxtaposition of the alpha promoter of the U(S)12 gene to the coding sequence of the U(S)11 gene. The mutant blocks the phosphorylation of eIF-2alpha but does not restore the virulence phenotype of the wild-type virus. We report another class of second-site, compensatory mutants that do not map to the U(S)10-12 domain of the HSV-1 genome. All mutants in this series exhibit sustained late protein synthesis, higher yields in human cells, and reduced phosphorylation of PKR that appears to be phosphatase dependent. Specific dephosphorylation of eIF-2alpha was not demonstrable. At least one mutant in this series exhibited a partial restoration of the virulence phenotype characteristic of the wild-type virus phenotype. The results suggest that the second-site mutations reflect activation of fossilized functions designed to block the interferon response pathways in cells infected with the progenitor of present HSV.  相似文献   

9.
Translation initiation of the picornavirus genome is regulated by an internal ribosome entry site (IRES). The IRES of a neurovirulent picornavirus, the GDVII strain of Theiler's murine encephalomyelitis virus, requires polypyrimidine tract-binding protein (PTB) for its function. Although neural cells are deficient in PTB, they express a neural-specific homologue of PTB (nPTB). We now show that nPTB and PTB bind similarly to multiple sites in the GDVII IRES, rendering it competent for efficient translation initiation. Mutation of a PTB or nPTB site results in a more prominent decrease in nPTB than PTB binding, a decrease in activity of nPTB compared with PTB in promoting translation initiation, and attenuation of the neurovirulence of the virus without a marked effect on virus growth in non-neural cells. The addition of a second-site mutation in the mutant IRES generates a new PTB (nPTB) binding site, and restores nPTB binding, translation initiation and neurovirulence. We conclude that the tissue-specific expression and differential RNA-binding properties of PTB and nPTB are important determinants of cell-specific translational control and viral neurovirulence.  相似文献   

10.
Mulvey M  Camarena V  Mohr I 《Journal of virology》2004,78(18):10193-10196
The gamma(1)34.5 gene product is important for the resistance of herpes simplex virus type 1 (HSV-1) to interferon. However, since the inhibition of protein synthesis observed in cells infected with a gamma(1)34.5 mutant virus results from the combined loss of the gamma(1)34.5 gene product and the failure to translate the late Us11 mRNA, we sought to characterize the relative interferon sensitivity of mutants unable to produce either the Us11 or the gamma(1)34.5 polypeptide. We now demonstrate that primary human cells infected with a Us11 mutant virus are hypersensitive to alpha interferon, arresting translation upon entry into the late phase of the viral life cycle. Furthermore, immediate-early expression of Us11 by a gamma(1)34.5 deletion mutant is sufficient to render translation resistant to alpha interferon. Finally, we establish that the Us11 gene product is required for wild-type levels of replication in alpha interferon-treated cells and, along with the gamma(1)34.5 gene, is an HSV-1-encoded interferon resistance determinant.  相似文献   

11.
The herpes simplex virus type 1 (HSV-1) neurovirulence gene encoding ICP34.5 controls the autophagy pathway. HSV-1 strains lacking ICP34.5 are attenuated in growth and pathogenesis in animal models and in primary cultured cells. While this growth defect has been attributed to the inability of an ICP34.5-null virus to counteract the induction of translational arrest through the PKR antiviral pathway, the role of autophagy in the regulation of HSV-1 replication is unknown. Here we show that HSV-1 infection induces autophagy in primary murine embryonic fibroblasts and that autophagosome formation is increased to a greater extent following infection with an ICP34.5-deficient virus. Elimination of the autophagic pathway did not significantly alter the replication of wild-type HSV-1 or ICP34.5 mutants. The phosphorylation state of eIF2alpha and viral protein accumulation were unchanged in HSV-1-infected cells unable to undergo autophagy. These data show that while ICP34.5 regulates autophagy, it is the prevention of translational arrest by ICP34.5 rather than its control of autophagy that is the pivotal determinant of efficient HSV-1 replication in primary cell culture.  相似文献   

12.
Cheng G  Brett ME  He B 《Journal of virology》2002,76(18):9434-9445
The gamma(1)34.5 protein of herpes simplex virus type 1 (HSV-1) is required for viral neurovirulence in vivo. In infected cells, this viral protein prevents the shutoff of protein synthesis mediated by double-stranded-RNA-dependent protein kinase PKR. This is accomplished by recruiting protein phosphatase 1 to dephosphorylate the alpha subunit of translation initiation factor eIF-2 (eIF-2 alpha). Moreover, the gamma(1)34.5 protein is implicated in viral egress and interacts with proliferating cell nuclear antigen. In this report, we show that the gamma(1)34.5 protein encoded by HSV-1(F) is distributed in the nucleus, nucleolus, and cytoplasm in transfected or superinfected cells. Deletion analysis revealed that the Arg-rich cluster from amino acids 1 to 16 in the gamma(1)34.5 protein functions as a nucleolar localization signal. The region from amino acids 208 to 236, containing a bipartite basic amino acid cluster, is able to mediate nuclear localization. R(215)A and R(216)A substitutions in the bipartite motif disrupt this activity. Intriguingly, leptomycin B, an inhibitor of nuclear export, blocks the cytoplasmic accumulation of the gamma(1)34.5 protein. L(134)A and L(136)A substitutions in the leucine-rich motif completely excluded the gamma(1)34.5 protein from the cytoplasm. These results suggest that the gamma(1)34.5 protein continuously shuttles between the nucleus, nucleolus, and cytoplasm, which may be a requirement for the different activities of the gamma(1)34.5 protein in virus-infected cells.  相似文献   

13.
The 3' noncoding region of turnip yellow mosaic virus RNA includes an 82-nucleotide-long tRNA-like structure domain and a short upstream region that includes a potential pseudoknot overlapping the coat protein termination codon. Genomic RNAs with point mutations in the 3' noncoding region that result in poor replication in protoplasts and no systemic symptoms in planta were inoculated onto Chinese cabbage plants in an effort to obtain second-site suppressor mutations. Putative second-site suppressor mutations were identified by RNase protection and sequencing and were then introduced into genomic cDNA clones to permit their characterization. A C-57----U mutation in the tRNA-like structure was a strong suppressor of the C-55----A mutation which prevented both systemic infection and in vitro valylation of the viral RNA. Both of these phenotypes were rescued in the double mutant. An A-107----C mutation was a strong second-site suppressor of the U-96----G mutation, permitting the double mutant to establish systemic infection. The C-107 and G-96 mutations are located on opposite strands of one helix of a potential pseudoknot, and the results support a functional role for the pseudoknot structure. A mutation near the 5' end of the genome (G + 92----A), at position -3 relative to the initiation codon of the essential open reading frame 206, was found to be a general potentiator of viral replication, probably as a result of enhanced expression of open reading frame 206. The A + 92 mutation enhanced the replication of mutant TYMC-G96 in protoplasts but was not a sufficiently potent suppressor to permit systemic spread of the A + 92/G-96 double mutant in plants.  相似文献   

14.
The herpes simplex virus type 1 gamma34.5 gene product and the cellular GADD34 protein both contain similar domains that can regulate the activity of eukaryotic initiation factor 2 (eIF2), a critical translation initiation factor. Viral mutants that lack the GADD34-related function grow poorly on a variety of malignant human cells, as activation of the cellular PKR kinase leads to the accumulation of inactive, phosphorylated eIF2 at late times postinfection. Termination of translation prior to the completion of the viral reproductive cycle leads to impaired growth. Extragenic suppressors that regain the ability to synthesize proteins efficiently in the absence of the viral GADD34-related function have been isolated. These suppressor alleles are dominant in trans and affect the steady-state accumulation of several viral mRNA species. We demonstrate that deregulated expression of Us11, a virus-encoded RNA-binding, ribosome-associated protein is necessary and sufficient to confer a growth advantage upon viral mutants that lack a GADD34-related function. Ectopic expression of Us11 reduces the accumulation of the activated cellular PKR kinase and allows for sustained protein synthesis. Thus, an RNA-binding, ribosome-associated protein (Us11) and a GADD34-related protein (gamma34.5) both function in a signal pathway that regulates translation by modulating eIF2 phosphorylation.  相似文献   

15.
In cells infected with the herpes simplex virus 1 (HSV-1) recombinant R3616 lacking both copies of the γ134.5 gene, the double-stranded protein kinase R (PKR) is activated, eIF-2α is phosphorylated, and protein synthesis is shut off. Although PKR is also activated in cells infected with the wild-type virus, the product of the γ134.5 gene, infected-cell protein 34.5 (ICP34.5), binds protein phosphatase 1α and redirects it to dephosphorylate eIF-2α, thus enabling sustained protein synthesis. Serial passage in human cells of a mutant lacking the γ134.5 gene yields second-site, compensatory mutants lacking various domains of the α47 gene situated next to the US11 gene (I. Mohr and Y. Gluzman, EMBO J. 15:4759–4766, 1996). We report the construction of two recombinant viruses: R5103, lacking the γ134.5, US8, -9, -10, and -11, and α47 (US12) genes; and R5104, derived from R5103 and carrying a chimeric DNA fragment containing the US10 gene and the promoter of the α47 gene fused to the coding domain of the US11 gene. R5104 exhibited a protein synthesis profile similar to that of wild-type virus, whereas protein synthesis was shut off in cells infected with R5103 virus. Studies on the wild-type parent and mutant viruses showed the following: (i) PKR was activated in cells infected with parent or mutant virus but not in mock-infected cells, consistent with earlier studies; (ii) lysates of R3616, R5103, and R5104 virus-infected cells lacked the phosphatase activity specific for eIF-2α characteristic of wild-type virus-infected cells; and (iii) lysates of R3616 and R5103, which lacked the second-site compensatory mutation, contained an activity which phosphorylated eIF-2α in vitro, whereas lysates of mock-infected cells or cells infected with HSV-1(F) or R5104 did not phosphorylate eIF-2α. We conclude that in contrast to wild-type virus-infected cells, which preclude the shutoff of protein synthesis by causing rapid dephosphorylation of eIF-2α, in cells infected with γ134.5 virus carrying the compensatory mutation, eIF-2α is not phosphorylated. The activity made apparent by the second-site mutation may represent a more ancient mechanism evolved to preclude the shutoff of protein synthesis.  相似文献   

16.
Luttge BG  Moyer RW 《Journal of virology》2005,79(14):9168-9179
The orthopoxvirus serpin SPI-1 is an intracellular serine protease inhibitor that is active against cathepsin G in vitro. Rabbitpox virus (RPV) mutants with deletions of the SPI-1 gene grow on monkey kidney cells (CV-1) but do not plaque on normally permissive human lung carcinoma cells (A549). This reduced-host-range (hr) phenotype suggests that SPI-1 may interact with cellular and/or other viral proteins. We devised a genetic screen for suppressors of SPI-1 hr mutations by first introducing a mutation into SPI-1 (T309R) at residue P14 of the serpin reactive center loop. The SPI-1 T309R serpin is inactive as a protease inhibitor in vitro. Introduction of the mutation into RPV leads to the same restricted hr phenotype as deletion of the SPI-1 gene. Second-site suppressors were selected by restoration of growth of the RPV SPI-1 T309R hr mutant on A549 cells. Both intragenic and extragenic suppressors of the T309R mutation were identified. One novel intragenic suppressor mutation, T309C, restored protease inhibition by SPI-1 in vitro. Extragenic suppressor mutations were mapped by a new procedure utilizing overlapping PCR products encompassing the entire genome in conjunction with marker rescue. One suppressor mutation, which also rendered the virus temperature sensitive for growth, mapped to the DNA polymerase gene (E9L). Several other suppressors mapped to gene D5R, an NTPase required for DNA replication. These results unexpectedly suggest that the host range function of SPI-1 may be associated with viral DNA replication by an as yet unknown mechanism.  相似文献   

17.
Ma Y  Jin H  Valyi-Nagy T  Cao Y  Yan Z  He B 《Journal of virology》2012,86(4):2188-2196
The γ(1)34.5 protein of herpes simplex viruses (HSV) is essential for viral pathogenesis, where it precludes translational arrest mediated by double-stranded-RNA-dependent protein kinase (PKR). Paradoxically, inhibition of PKR alone is not sufficient for HSV to exhibit viral virulence. Here we report that γ(1)34.5 inhibits TANK binding kinase 1 (TBK1) through its amino-terminal sequences, which facilitates viral replication and neuroinvasion. Compared to wild-type virus, the γ(1)34.5 mutant lacking the amino terminus induces stronger antiviral immunity. This parallels a defect of γ(1)34.5 for interacting with TBK1 and reducing phosphorylation of interferon (IFN) regulatory factor 3. This activity is independent of PKR. Although resistant to IFN treatment, the γ(1)34.5 amino-terminal deletion mutant replicates at an intermediate level between replication of wild-type virus and that of the γ(1)34.5 null mutant in TBK1(+/+) cells. However, such impaired viral growth is not observed in TBK1(-/-) cells, indicating that the interaction of γ(1)34.5 with TBK1 dictates HSV infection. Upon corneal infection, this mutant replicates transiently but barely invades the trigeminal ganglia or brain, which is a difference from wild-type virus and the γ(1)34.5 null mutant. Therefore, in addition to PKR, γ(1)34.5 negatively regulates TBK1, which contributes viral replication and spread in vivo.  相似文献   

18.
19.
When expressed in vitro, the neuraminidase (NA) of A/WSN/33 (WSN) virus binds and sequesters plasminogen on the cell surface, leading to enhanced cleavage of the viral hemagglutinin. To obtain direct evidence that the plasminogen-binding activity of the NA enhances the pathogenicity of WSN virus, we generated mutant viruses whose NAs lacked plasminogen-binding activity because of a mutation at the C terminus, from Lys to Arg or Leu. In the presence of trypsin, these mutant viruses replicated similarly to wild-type virus in cell culture. By contrast, in the presence of plasminogen, the mutant viruses failed to undergo multiple cycles of replication while the wild-type virus grew normally. The mutant viruses showed attenuated growth in mice and failed to grow at all in the brain. Furthermore, another mutant WSN virus, possessing an NA with a glycosylation site at position 130 (146 in N2 numbering), leading to the loss of neurovirulence, failed to grow in cell culture in the presence of plasminogen. We conclude that the plasminogen-binding activity of the WSN NA determines its pathogenicity in mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号