首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complexity of mammalian physiology requires a diverse array of ion channel proteins. This diversity extends even to a single family of channels. For example, the family of Ca2+-activated K channels contains three structural subfamilies characterized by small, intermediate, and large single channel conductances. Many cells and tissues, including neurons, vascular smooth muscle, endothelial cells, macrophages, and salivary glands express more than a single class of these channels, raising questions about their specific physiological roles. We demonstrate here a novel interaction between two types of Ca2+-activated K channels: maxi-K channels, encoded by the KCa1.1 gene, and IK1 channels (KCa3.1). In both native parotid acinar cells and in a heterologous expression system, activation of IK1 channels inhibits maxi-K activity. This interaction was independent of the mode of activation of the IK1 channels: direct application of Ca2+, muscarinic receptor stimulation, or by direct chemical activation of the IK1 channels. The IK1-induced inhibition of maxi-K activity occurred in small, cell-free membrane patches and was due to a reduction in the maxi-K channel open probability and not to a change in the single channel current level. These data suggest that IK1 channels inhibit maxi-K channel activity via a direct, membrane-delimited interaction between the channel proteins. A quantitative analysis indicates that each maxi-K channel may be surrounded by four IK1 channels and will be inhibited if any one of these IK1 channels opens. This novel, regulated inhibition of maxi-K channels by activation of IK1 adds to the complexity of the properties of these Ca2+-activated K channels and likely contributes to the diversity of their functional roles.  相似文献   

2.
Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca2+-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl? channel blocker DIDS or lowering external Cl? concentration identifying it as a Ca2+-activated Cl? current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.  相似文献   

3.
Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 microM-100 microM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.  相似文献   

4.
BK large conductance voltage- and calcium-activated potassium channels respond to elevations in intracellular calcium and membrane potential depolarization, braking excitability of smooth muscle. BK channels are thought to have a particularly prominent role in urinary bladder smooth muscle function and therefore are candidate targets for overactive bladder therapy. To address the role of the BK channel in urinary bladder function, the gene mSlo1 for the pore-forming subunit of the BK channel was deleted. Slo(-/-) mice were viable but exhibited moderate ataxia. Urinary bladder smooth muscle cells of Slo(-/-) mice lacked calcium- and voltage-activated BK currents, whereas local calcium transients ("calcium sparks") and voltage-dependent potassium currents were unaffected. In the absence of BK channels, urinary bladder spontaneous and nerve-evoked contractions were greatly enhanced. Consistent with increased urinary bladder contractility caused by the absence of BK currents, Slo(-/-) mice demonstrate a marked elevation in urination frequency. These results reveal a central role for BK channels in urinary bladder function and indicate that BK channel dysfunction leads to overactive bladder and urinary incontinence.  相似文献   

5.
Inglis V  Karpinski E  Benishin C 《Life sciences》2003,73(18):2291-2305
In N1E 115 neuroblastoma cells, gamma-dendrotoxin (DTX, 200 nM) blocked the outward K(+) current by 31.1 +/- 3.5% (n = 4) with approximately 500 nM Ca(2+) in the pipet solution, but had no effect on the outward K(+) current when internal Ca(2+) was reduced. Using a ramp protocol, iberiotoxin (IbTX, 100 nM) inhibited a component of the whole cell current, but in the presence of 200 nM gamma-DTX, no further inhibition by IbTX was observed. Two types of single channels were seen using outside-out patches when the pipette free Ca(2+) concentration was approximately 500 nM; a 63 pS and a 187 pS channel. The 63 pS channel was TEA-, IbTX- and gamma-DTX-insensitive, while the 187 pS channel was blocked by 1 mM TEA, 100 nM IbTX or 200 nM gamma-DTX. Both channels were activated by external application of ionomycin, when the pipet calcium concentration was reduced. gamma-DTX (200 nM) reduced the probability of openings of the 187 pS channel, with an IC(50) of 8.5 nM. In GH(3) cells gamma-DTX (200 nM) also blocked an IbTX-sensitive component of whole-cell K(+) currents. These results suggest that gamma-DTX blocks a large conductance Ca(2+) activated K(+) current in N1E 115 cells. This is the first indication that any of the dendrotoxins, which have classically been known to block voltage-gated (Kv) channels, can also block Ca(2+) activated K(+) channels.  相似文献   

6.
We examined the effects of the mitochondrial Ca(2+)-activated K(+) (mitoBK(Ca)) channel activator NS 1619 on L-type Ca(2+) channels in rat ventricular myocytes. NS 1619 inhibited the Ca(2+) current in a dose-dependent manner. NS 1619 shifted the activation curve to more positive potentials, but did not have a significant effect on the inactivation curve. Pretreatment with inhibitors of membrane BK(Ca) channel, mitoBK(Ca) channel, protein kinase C, protein kinase A, and protein kinase G had little effect on the Ca(2+) current and did not alter the inhibitory effect of NS 1619 significantly. The application of additional NS 1619 in the presence of isoproterenol, a selective beta-adrenoreceptor agonist, reduced the Ca(2+) current to approximately the same level as a single application of NS 1619. In conclusion, our results suggest that NS 1619 inhibits the Ca(2+) current independent of the mitoBK(Ca) channel and protein kinases. Since NS 1619 is widely used to study mitoBK(Ca) channel function, it is essential to verify these unexpected effects of NS 1619 before experimental data can be interpreted accurately.  相似文献   

7.
Bile acids have been reported to produce relaxation of smooth muscle both in vitro and in vivo. The cellular mechanisms underlying bile acid-induced relaxation are largely unknown. Here we demonstrate, using patch-clamp techniques, that natural bile acids and synthetic analogues reversibly increase BK(Ca) channel activity in rabbit mesenteric artery smooth muscle cells. In excised inside-out patches bile acid-induced increases in channel activity are characterized by a parallel leftward shift in the activity-voltage relationship. This increase in BK(Ca) channel activity is not due to Ca(2+)-dependent mechanism(s) or changes in freely diffusible messengers, but to a direct action of the bile acid on the channel protein itself or some closely associated component in the cell membrane. For naturally occurring bile acids, the magnitude of bile acid-induced increase in BK(Ca) channel activity is inversely related to the number of hydroxyl groups in the bile acid molecule. By using synthetic analogues, we demonstrate that such increase in activity is not affected by several chemical modifications in the lateral chain of the molecule, but is markedly favored by polar groups in the side of the steroid rings opposite to the side where the methyl groups are located, which stresses the importance of the planar polarity of the molecule. Bile acid-induced increases in BK(Ca) channel activity are also observed in smooth muscle cells freshly dissociated from rabbit main pulmonary artery and gallbladder, raising the possibility that a direct activation of BK(Ca) channels by these planar steroids is a widespread phenomenon in many smooth muscle cell types. Bile acid concentrations that increase BK(Ca) channel activity in mesenteric artery smooth muscle cells are found in the systemic circulation under a variety of human pathophysiological conditions, and their ability to enhance BK(Ca) channel activity may explain their relaxing effect on smooth muscle.  相似文献   

8.
K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could contribute to the voltage-dependent Ca2+-activated macroscopic K+ current (IC) that has been observed in several neuronal somata preparations, as well as in other cells. Some of the properties reported here may serve to distinguish which type contributes in each case. A third class of smaller (40-50 pS) channels was also studied. These channels were independent of calcium over the concentration range examined (10(-7)-10(-3) M), and were also independent of voltage over the range of pipette potentials of -60 to +60 mV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
10.
Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca2+-activated K+ (SK) channel, SK3, promotes feedback regulation of myometrial Ca2+ and hence relaxation of the uterus. To determine the specific functional impact of SK3 channels, we assessed isometric contractions of uterine strips from genetically altered mice (SK3T/T), in which SK3 is overexpressed and can be suppressed by oral administration of doxycycline (SK3T/T+Dox). We found SK3 protein in mouse myometrium, and this expression was substantially higher in SK3T/T mice and lower in SK3T/T+Dox mice compared with wild-type (WT) controls. Sustained contractions elicited by 60 mM KCl were not different among SK3T/T, SK3T/T+Dox, and WT mice. However, the rate of onset and magnitude of spontaneously occurring phasic contractions was muted significantly in isolated uterine strips from SK3T/T mice compared with those from WT mice. These spontaneous contractions were augmented greatly by blockade of SK channels with apamin or by suppression of SK3 expression. Phasic but not tonic contraction in response to oxytocin was depressed in uterine strips from SK3T/T mice, whereas suppression of SK3 channel expression or treatment with apamin promoted the predominance of large coordinated phasic events over tone. Spontaneous contractions and the phasic component of oxytocin contractions were blocked by nifedipine but not by cyclopiazonic acid. Our findings suggest that SK3 channels play an important role in regulating uterine function by limiting influx through L-type Ca2+ channels and disrupting the development of concerted phasic contractile events. uterus; Ca2+-activated K+ channel; doxycycline; mouse  相似文献   

11.
We investigated the role of the mitochondrial ATP-sensitive K(+) (K(ATP)) channel, the mitochondrial big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel, and the mitochondrial permeability transition pore (MPTP) in the ouabain-induced increase of mitochondrial Ca(2+) in native rat ventricular myocytes by loading cells with rhod 2-AM. To overload mitochondrial Ca(2+), we pretreated cells with ouabain before applying mitochondrial K(ATP) or BK(Ca) channel and/or MPTP opener. Ouabain (1 mM) increased the rhod 2-sensitive fluorescence intensity (160 +/- 5.0% of control), which was dramatically decreased to the control level on application of diazoxide and NS-1619 in a dose-dependent manner (half-inhibition concentrations of 78.3 and 7.78 muM for diazoxide and NS-1619, respectively). This effect was reversed by selective inhibition of the mitochondrial K(ATP) channel by 5-hydroxydecanoate, the mitochondrial BK(Ca) channel by paxilline, and the MPTP by cyclosporin A. Although diazoxide did not efficiently reduce mitochondrial Ca(2+) during prolonged exposure to ouabain, NS-1619 reduced mitochondrial Ca(2+). These results suggest that although mitochondrial BK(Ca) and K(ATP) channels contribute to reduction of ouabain-induced mitochondrial Ca(2+) overload, activation of the mitochondrial BK(Ca) channel more efficiently reduces ouabain-induced mitochondrial Ca(2+) overload in our experimental model.  相似文献   

12.
13.
Based on electrophysiological studies, Ca(2+)-activated K(+) channels and voltage-gated Ca(2+) channels appear to be located in close proximity in neurons. Such colocalization would ensure selective and rapid activation of K(+) channels by local increases in the cytosolic calcium concentration. The nature of the apparent coupling is not known. In the present study we report a direct coassembly of big conductance Ca(2+)-activated K(+) channels (BK) and L-type voltage-gated Ca(2+) channels in rat brain. Saturation immunoprecipitation studies were performed on membranes labeled for BK channels and precipitated with antibodies against alpha(1C) and alpha(1D) L-type Ca(2+) channels. To confirm the specificity of the interaction, precipitation experiments were carried out also in reverse order. Also, additive precipitation was performed because alpha(1C) and alpha(1D) L-type Ca(2+) channels always refer to separate ion channel complexes. Finally, immunochemical studies showed a distinct but overlapping expression pattern of the two types of ion channels investigated. BK and L-type Ca(2+) channels were colocalized in various compartments throughout the rat brain. Taken together, these results demonstrate a direct coassembly of BK channels and L-type Ca(2+) channels in certain areas of the brain.  相似文献   

14.
15.
We investigated whether nitric oxide (NO) directly activates the cloned alpha-subunit of large conductance Ca2+-activated K+ (Maxi-K) channels from rat brain (rSlo), expressed either in HEK293 cells or Xenopus oocytes. In inside-out patches, the application of S-nitroso-N-acetylpenicillamine (SNAP), a NO-releasing compound, reversibly activated the channel shifting the voltage dependent activation curve of the macroscopic Maxi-K current to the left by about 15 mV. Pretreatment of the patches with N-ethylmaleimide to alkylate free sulfhydryl groups did not prevent the effect of SNAP, suggesting that NO may directly interact with the channels. These results suggest that Maxi-K channels might be one of the physiological targets of NO in the brain.  相似文献   

16.
Airway smooth muscle is richly endowed with muscarinic receptors of the M(2) and M(3) subtype. Stimulation of these receptors inhibits large conductance calcium-activated K(+) (BK) channels, a negative feed back regulator, in a pertussis toxin-sensitive manner and thus facilitates contraction. The underlying mechanism, however, is unknown. We therefore studied the activity of bovine trachea BK channels in HEK293 cells expressing the M(2) or M(3) receptor (M(2)R or M(3)R). In M(2)R- but not M(3)R-expressing cells, maximal effective concentrations of carbamoylcholine (CCh) inhibited whole cell BK currents by 53%. This M(2)R-induced inhibition was abolished by pertussis toxin treatment or overexpression of the Gbetagamma scavenger transducin-alpha. In inside-out patches, direct application of 300 nm purified Gbetagamma decreased channel open probability by 55%. The physical interaction of Gbetagamma with BK channels was confirmed by co-immunoprecipitation. Interestingly, inhibition of phospholipase C as well as protein kinase C activities also reversed the CCh effect but to a smaller (approximately 20%) extent. Mouse tracheal cells responded similarly to CCh, purified Gbetagamma and phospholipase C/protein kinase C inhibition as M(2)R-expressing HEK293 cells. Our results demonstrate that airway M(2)Rs inhibit BK channels by a dual, Gbetagamma-mediated mechanism, a direct membrane-delimited interaction, and the activation of the phospholipase C/protein kinase C pathway.  相似文献   

17.
A primary determinant of vascular smooth muscle (VSM) tone and contractility is the resting membrane potential, which, in turn, is influenced heavily by K+ channel activity. Previous studies from our laboratory and others have demonstrated differences in the contractility of cerebral arteries from near-term fetal and adult animals. To test the hypothesis that these contractility differences result from maturational changes in voltage-gated K+ channel function, we compared this function in VSM myocytes from adult and fetal sheep cerebral arteries. The primary current-carrying, voltage-gated K+ channels in VSM myocytes are the large conductance Ca2+-activated K+ channels (BKCa) and voltage-activated K+ (KV) channels. We observed that at voltage-clamped membrane potentials of +60 mV in perforated whole cell studies, the normalized outward current densities in fetal myocytes were >30% higher than in those of the adult (P < 0.05) and that these were predominantly due to iberiotoxin-sensitive currents from BKCa channels. Excised, insideout membrane patches revealed nearly identical unitary conductances and Hill coefficients for BKCa channels. The plot of log intracellular [Ca2+] ([Ca2+]i) versus voltage for half-maximal activation (V(1/2)) yielded linear and parallel relationships, and the change in V(1/2) for a 10-fold change in [Ca2+] was also similar. Channel activity increased e-fold for a 19 +/- 2-mV depolarization for adult myocytes and for an 18 +/- 1-mV depolarization for fetal myocytes (P > 0.05). However, the relationship between BKCa open probability and membrane potential had a relative leftward shift for the fetal compared with adult myocytes at different [Ca2+]i. The [Ca2+] for half-maximal activation (i.e., the calcium set points) at 0 mV were 8.8 and 4.7 microM for adult and fetal myocytes, respectively. Thus the increased BKCa current density in fetal myocytes appears to result from a lower calcium set point.  相似文献   

18.
Functional modification of a Ca2+-activated K+ channel by trimethyloxonium   总被引:3,自引:0,他引:3  
R MacKinnon  C Miller 《Biochemistry》1989,28(20):8087-8092
Single Ca2+-activated K+ channels from rat skeletal muscle plasma membranes were studied in neutral phospholipid bilayers. Channels were chemically modified by briefly exposing the external side to the carboxyl group modifying reagent trimethyloxonium (TMO). TMO modification, in a "multi-hit" fashion, reduces the single-channel conductance without affecting ion selectivity. Modification also shifts the voltage activation curve toward more depolarized voltages and reduces the affinity of the channel blocker charybdotoxin (CTX). CTX, bound to the channel during the TMO exposure, prevents the TMO-induced reduction of the single-channel conductance. These data suggest that the high-conductance Ca2+-activated K+ channel has carboxyl groups on its external surface. These groups influence ion conduction, gating, and the binding of CTX.  相似文献   

19.
It has been suggested that the large conductance Ca(2)+-activated K(+) channel contains one or more domains known as regulators of K(+) conductance (RCK) in its cytosolic C terminus. Here, we show that the second RCK domain (RCK2) is functionally important and that it forms a heterodimer with RCK1 via a hydrophobic interface. Mutant channels lacking RCK2 are nonfunctional despite their tetramerization and surface expression. The hydrophobic residues that are expected to form an interface between RCK1 and RCK2, based on the crystal structure of the bacterial MthK channel, are well conserved, and the interactions of these residues were confirmed by mutant cycle analysis. The hydrophobic interaction appears to be critical for the Ca(2+)-dependent gating of the large conductance Ca(2+)-activated K(+) channel.  相似文献   

20.
AimsThe goal of this study was to evaluate the influence of γ-irradiation on Ca2+-activated K+ channel (BKCa) function and expression in rat thoracic aorta.Main methodsAortic cells or tissues were studied by the measurement of force versus [Ca2+]i, patch-clamp technique, and RT-PCR.Key findingsStimulation of smooth muscle cells with depolarizing voltage steps showed expression of outward K+ currents. Paxilline, an inhibitor of BKCa channels, decreased outward K+ current density. Outward currents in smooth muscle cells obtained from irradiated animals 9 and 30 days following radiation exposure demonstrated a significant decrease in K+ current density. Paxilline decreased K+ current in cells obtained 9 days, but was without effect 30 days after irradiation suggesting the absence of BKCa channels. Aortic tissue from irradiated animals showed progressively enhanced contractile responses to phenylephrine in the post-irradiation period of 9 and 30 days. The concomitant Ca2+ transients were significantly smaller, as compared to tissues from control animals, 9 days following irradiation but were increased above control levels 30 days following irradiation. Irradiation produced a decrease in BKCa α- and β1-subunit mRNA levels in aortic smooth muscle cells suggesting that the vasorelaxant effect of these channels may be diminished.SignificanceThese results suggest that the enhanced contractility of vascular tissue from animals exposed to radiation may result from an increase in myofilament Ca2+ sensitivity in the early post-irradiation period and a decrease in BKCa channel expression in the late post-irradiation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号