共查询到20条相似文献,搜索用时 15 毫秒
1.
Ligand interactions of the cation-dependent mannose 6-phosphate receptor. Comparison with the cation-independent mannose 6-phosphate receptor 总被引:12,自引:0,他引:12
The interactions of the bovine cation-dependent mannose 6-phosphate receptor with monovalent and divalent ligands have been studied by equilibrium dialysis. This receptor appears to be a homodimer or a tetramer. Each mole of receptor monomer bound 1.2 mol of the monovalent ligands, mannose 6-phosphate and pentamannose phosphate with Kd values of 8 X 10(-6) M and 6 X 10(-6) M, respectively and 0.5 mol of the divalent ligand, a high mannose oligosaccharide with two phosphomonoesters, with a Kd of 2 X 10(-7) M. When Mn2+ was replaced by EDTA in the dialysis buffer, the Kd for pentamannose phosphate was 2.5 X 10(-5) M. By measuring the affinity of the cation-dependent and cation-independent mannose 6-phosphate receptors for a variety of mannose 6-phosphate analogs, we conclude that the 6-phosphate and the 2-hydroxyl of mannose 6-phosphate each contribute approximately 4-5 kcal/mol of Gibb's free energy to the binding reaction. Neither receptor appears to interact substantially with the anomeric oxygen of mannose 6-phosphate. The receptors differ in that the cation-dependent receptor displays no detectable affinity for N-acetylglucosamine 1'-(alpha-D-methylmannopyranose 6-monophosphate) whereas this ligand binds to the cation-independent receptor with a poor, but readily measurable Kd of about 0.1 mM. The spacing of the mannose 6-phosphate-binding sites relative to each other may also differ for the two receptors. 相似文献
2.
Ligand interactions of the cation-independent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding 总被引:12,自引:0,他引:12
The interaction of the bovine cation-independent mannose 6-phosphate receptor with a variety of phosphorylated ligands has been studied using equilibrium dialysis and immobilized receptor to measure ligand binding. The dissociation constants for mannose 6-phosphate, pentamannose phosphate, bovine testes beta-galactosidase, and a high mannose oligosaccharide with two phosphomonoesters were 7 X 10(-6) M, 6 X 10(-6) M, 2 X 10(-8) M, and 2 X 10(-9) M, and the mol of ligand bound/mol of receptor monomer were 2.17, 1.85, 0.9, and 1.0, respectively. We conclude that the cation-independent mannose 6-phosphate receptor has two mannose 6-phosphate-binding sites/polypeptide chain. 相似文献
3.
The cation-dependent mannose 6-phosphate receptor. Structural requirements for mannose 6-phosphate binding and oligomerization 总被引:2,自引:0,他引:2
The structural requirements for oligomerization and the generation of a functional mannose 6-phosphate (Man-6-P) binding site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) were analyzed. Chemical cross-linking studies on affinity-purified CD-MPR and on solubilized membranes containing the receptor indicate that the CD-MPR exists as a homodimer. To determine whether dimer formation is necessary for the generation of a Man-6-P binding site, a cDNA coding for a truncated receptor consisting of only the signal sequence and the extracytoplasmic domain was constructed and expressed in Xenopus laevis oocytes. The expressed protein was completely soluble, monomeric in structure, and capable of binding phosphomannosyl residues. Like the dimeric native receptor, the truncated receptor can release its ligand at low pH. Ligand blot analysis using bovine testes beta-galactosidase showed that the monomeric form of the CD-MPR from bovine liver and testes is capable of binding Man-6-P. These results indicate that the extracytoplasmic domain of the receptor contains all the information necessary for ligand binding as well as for acid-dependent ligand dissociation and that oligomerization is not required for the formation of a functional Man-6-P binding site. Several different mutant CD-MPRs were generated and expressed in X. laevis oocytes to determine what region of the receptor is involved in oligomerization. Chemical cross-linking analyses of these mutant proteins indicate that the transmembrane domain is important for establishing the quaternary structure of the CD-MPR. 相似文献
4.
46 kd mannose 6-phosphate receptor: cloning, expression, and homology to the 215 kd mannose 6-phosphate receptor 总被引:10,自引:0,他引:10
We have isolated cDNA clones encoding the entire sequence of the bovine 46 kd cation-dependent mannose 6-phosphate (CD Man-6-P) receptor. Translation of CD Man-6-P receptor mRNA in Xenopus laevis oocytes results in a protein that binds specifically to phosphomannan-Sepharose, thus demonstrating that our cDNA clones encode a functional receptor. The deduced 279 amino acid sequence reveals a single polypeptide chain that contains a putative signal sequence and a transmembrane domain. Trypsin digestion of microsomal membranes containing the receptor and the location of the five potential N-linked glycosylation sites indicate that the receptor is a transmembrane protein with an extracytoplasmic amino terminus. This extracytoplasmic domain is homologous to the approximately 145 amino acid long repeating domains present in the 215 kd cation-independent Man-6-P receptor. 相似文献
5.
Chavez CA Bohnsack RN Kudo M Gotschall RR Canfield WM Dahms NM 《Biochemistry》2007,46(44):12604-12617
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome. 相似文献
6.
The first indication that the insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/M6PR) is developmentally regulated came from studies of the serum form of the receptor in the rat. By immunoblotting, the circulating form of the receptor, which was 10 kDa smaller than the tissue receptor, was high in 19 day fetal and 3, 10, and 20 day postnatal sera and then declined sharply. We next used quantitative immunoblotting to measure the total tissue IGF-II/M6PR in the rat. The receptor levels were high in fetal tissues and in most tissues declined dramatically in late gestation and/or in the early postnatal period. The rank order of receptor expression was heart > placenta > lung = intestine > muscle = kidney > liver > brain. In heart, the receptor was 1.7% of total protein in the extract. More recently, we have examined the expression of IGF-II/M6PR mRNA using Northern blotting and a solution hybridization/RNase protection assay. The rank order of receptor mRNA concentration among fetal tissues agreed with the rank order of receptor protein. The concentration of receptor mRNA was significantly lower in postnatal tissue than in fetal tissue. Thus IGF-II/M6PR mRNA concentration is an important determinant of receptor protein in most tissues. What is the function of the IGF-II/M6PR in embryonic and fetal tissues? The M6PR in birds and frogs does not bind IGF-II. It is intriguing that the rat IGF-II/M6PR is prominent during the embryonic and fetal periods, times at which the differences between mammals, on the one hand, and frogs and birds, on the other, are most striking. Tissue remodeling is an important feature of embryonic and fetal development. Therefore, the well-established lysosomal enzyme targeting function of the receptor may be of particular importance. Since IGF-II can inhibit the cellular uptake of lysosomal enzymes via the IGF-II/M6PR, IGF-II may modulate this lysosomal enzyme targeting function. In addition, the receptor can provide a degradative pathway for IGF-II by receptor-mediated internalization. Thus the receptor could provide a check on the high levels of IGF-II known to be present in the fetus. Finally, the IGF-II/M6PR could directly signal certain biologic responses to IGF-II. © 1993 Wiley-Liss, Inc. 相似文献
7.
The mannose 6-phosphate receptor and the biogenesis of lysosomes 总被引:122,自引:0,他引:122
Localization of the 215 kd mannose 6-phosphate receptor (MPR) was studied in normal rat kidney cells. Low levels of receptor were detected in the trans Golgi network, Golgi stack, plasma membrane, and peripheral endosomes. The bulk of the receptor was localized to an acidic, reticular-vesicular structure adjacent to the Golgi complex. The structure also labeled with antibodies to lysosomal enzymes and a lysosomal membrane glycoprotein (lgp120). While lysosome-like, this structure is not a typical lysosome that is devoid of MPRs. The endocytic marker alpha 2 macroglobulin-gold entered the structure at 37 degrees C, but not at 20 degrees C. With prolonged chase, most of the marker was transported from the structure into lysosomes. We propose that the MPR/lgp-enriched structure is a specialized endosome (prelysosome) that serves as an intermediate compartment into which endocytic vesicles discharge their contents, and where lysosomal enzymes are released from the MPR and packaged along with newly synthesized lysosomal glycoproteins into lysosomes. 相似文献
8.
Ultrastructural localization of the mannose 6-phosphate receptor in rat liver 总被引:11,自引:24,他引:11 下载免费PDF全文
H J Geuze J W Slot G J Strous A Hasilik K Von Figura 《The Journal of cell biology》1984,98(6):2047-2054
An affinity-purified rabbit antibody against rat liver mannose 6- phosphate receptor (MP-R) was prepared. The antibody was directed against a 215 kd-polypeptide and it recognized both ligand-occupied and free receptor. Anti-MP-R was used for immunofluorescence and immunoelectron microscopy of cryosections from rat liver. MP-R was demonstrated in all parenchymal liver cells, but not in endothelial lining cells. MP-R labeling was found at the entire plasma membrane, in coated pits and coated vesicles, in the compartment of uncoupling receptor and ligand, and in the Golgi complex. Lysosomes showed only scarce MP-R label. In double-labeling immunoelectron microscopy, MP-R co-localized with albumin in the Golgi cisternae and in secretory vesicles with lipoprotein particles. Cathepsin D was associated with MP- R in the Golgi cisternae. This finding indicates that MP-R/cathepsin D complexes traverse the Golgi complex on their way to the lysosomes. The possible involvement of CURL in lysosomal enzyme targeting is discussed. 相似文献
9.
Lipophilin, a hydrophobic myelin protein, was incorporated into phosphatidylcholine vesicles by dialysis from 2-chloroethanol which has been shown to produce single-layered lipid-protein vesicles. These vesicles were labeled with a nonpenetrating surface-labeling reagent, 4,4-diisothiocyano-2,2-ditritiostilbene disulfonic acid, ([3H]DIDS), in order to determine if the protein completely spans the bilayer. After labeling the vesicles, lipophilin was isolated. At least 88% of the protein was labeled with [3H]DIDS. Dextran (mol wt 250,000–275,000) was converted to the dialdehyde form and reacted with lipophilin-PC vesicles. In this case greater than 90% of the protein was complexed to the dextran. The high degree of labeling obtained with both compounds was consistent with a model in which lipophilin was considered to span the bilayer completely. 相似文献
10.
The two mannose 6-phosphate (Man-6-P) binding domains of the insulin-like growth factor II/mannose 6-phosphate receptor (Man-6-P/IGF2R), located in extracytoplasmic repeats 1-3 and 7-9, are capable of binding Man-6-P with low affinity and glycoproteins that contain more than one Man-6-P residue with high affinity. High affinity multivalent ligand binding sites could be formed through two possible mechanisms: the interaction of two Man-6-P binding domains within one Man-6-P/IGF2R molecule or by receptor oligomerization. To discriminate between these mechanisms, truncated FLAG epitope-tagged Man-6-P/IGF2R constructs, containing one or both of the Man-6-P binding domains, were expressed in 293T cells, and characterized for binding of pentamannose phosphate-bovine serum albumin (PMP-BSA), a pseudoglycoprotein bearing multiple Man-6-P residues. A construct containing all 15 repeats of the Man-6-P/IGF2R extracytoplasmic domain bound PMP-BSA with the same affinity as the full-length receptor (K(d) = 0.54 nm) with a curvilinear Scatchard plot. The presence of excess unlabeled PMP-BSA increased the dissociation rate of pre-formed (125)I-PMP-BSA/receptor complexes, suggesting negative cooperativity in multivalent ligand binding and affirming the role of multiple Man-6-P/IGF2R binding domains in forming high affinity binding sites. Truncated receptors containing only one Man-6-P binding domain and mutant receptor constructs, containing an Arg(1325) --> Ala mutation that eliminates binding to the repeats 7-9 binding domain, formed high affinity PMP-BSA binding, but with reduced stoichiometries. Collectively, these observations suggest that alignment of Man-6-P binding domains of separate Man-6-P/IGF2R molecules is responsible for the formation of high affinity Man-6-P binding sites and provide functional evidence for Man-6-P/IGF2R oligomerization. 相似文献
11.
Sorting of mannose 6-phosphate receptors and lysosomal membrane proteins in endocytic vesicles 总被引:2,自引:18,他引:2 下载免费PDF全文
《The Journal of cell biology》1988,107(6):2491-2501
The intracellular distributions of the cation-independent mannose 6- phosphate receptor (MPR) and a 120-kD lysosomal membrane glycoprotein (lgp120) were studied in rat hepatoma cells. Using quantitative immunogold cytochemistry we found 10% of the cell's MPR located at the cell surface. In contrast, lgp120 was not detectable at the plasma membrane. Intracellularly, MPR mainly occurred in the trans-Golgi reticulum (TGR) and endosomes. lgp120, on the other hand, was confined to endosomes and lysosomes. MPR was present in both endosomal tubules and vacuoles, whereas lgp120 was confined to the endosomal vacuoles. In cells incubated for 5-60 min with the endocytic tracer cationized ferritin, four categories of endocytic vacuoles could be discerned, i.e., vacuoles designated MPR+/lgp120-, MPR+/lgp120+, MPR-/lgp120+, and vacuoles nonimmunolabeled for MPR and lgp120. Tracer first reached MPR+/lgp120-, then MPR+/lgp120+, and finally MPR-/lgp120+ vacuoles, which are assumed to represent lysosomes. To study the kinetics of appearance of endocytic tracers in MPR-and/or lgp120-containing pools in greater detail, cells were allowed to endocytose horse-radish peroxidase (HRP) for 5-90 min. The reduction in detectability of MPR and lgp120 antigenicity on Western blots, due to treatment of cell homogenates with 3'3-diaminobenzidine, was followed in time. We found that HRP reached the entire accessible pool of MPR almost immediately after internalization of the tracer, while prolonged periods of time were required for HRP to maximally access lgp120. The combined data suggest that MPR+/lgp120+ vacuoles are endocytic vacuoles, intermediate between MPR+/lgp120-endosomes and MPR-/lgp120+ lysosomes, and represent the site where MPR is sorted from lgp120 destined for lysosomes. We propose that MPR is sorted from lgp120 by selective lateral distribution of the receptor into the tubules of this compartment, resulting in the retention of lgp120 in the vacuoles and the net transport of lgp120 to lysosomes. 相似文献
12.
The GGAs (Golgi-localizing, gamma-adaptin ear homology domain, ARF-binding) are a multidomain family of proteins implicated in protein trafficking between the Golgi and endosomes. Recent evidence has established that the cation-independent (CI) and cation-dependent (CD) mannose 6-phosphate receptors (MPRs) bind specifically to the VHS domains of the GGAs through acidic cluster-dileucine motifs at the carboxyl ends of their cytoplasmic tails. However, the CD-MPR binds the VHS domains more weakly than the CI-MPR. Alignment of the C-terminal residues of the two receptors revealed a number of non-conservative differences in the acidic cluster-dileucine motifs and the flanking residues. Mutation of these residues in the CD-MPR cytoplasmic tail to the corresponding residues in the CI-MPR conferred either full binding (H63D mutant), intermediate binding (R60S), or unchanged binding (E56F/S57H) to the GGAs as determined by in vitro glutathione S-transferase pull-down assays. Furthermore, the C-terminal methionine of the CD-MPR, but not the C-terminal valine of the CI-MPR, inhibited GGA binding. Addition of four alanines to the C-terminal valine of the CI-MPR also severely reduced GGA binding, demonstrating the importance of the spacing of the acidic cluster-dileucine motif relative to the C terminus for optimal GGA interaction. Mouse L cells stably expressing CD-MPRs with mutations that enhance GGA binding sorted cathepsin D more efficiently than wild-type CD-MPR. These studies provide an explanation for the observed differences in the relative affinities of the two MPRs for the GGA proteins. Furthermore, they indicate that the GGAs participate in lysosomal enzyme sorting mediated by the CD-MPR. 相似文献
13.
Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor 总被引:12,自引:0,他引:12
We have isolated and sequenced cDNA clones encoding the entire sequence of the bovine cation-independent mannose 6-phosphate receptor. The deduced 2499-amino acid precursor has a calculated molecular mass of 275 kDa. Analysis of the sequence indicates that the protein has a 44-residue amino-terminal signal sequence, a 2269-residue extracytoplasmic region, a single 23-residue transmembrane region, and a 163-residue carboxyl-terminal cytoplasmic region. The extra-cytoplasmic region consists of 15 contiguous repeating domains, one of which contains a 43-residue insertion that is similar to the type II repeat of fibronectin. The 15 domains have an average size of 147 amino acids and a distinctive pattern of 8 cysteine residues. Alignment of the 15 domains and the extracytoplasmic domain of the cation-dependent mannose 6-phosphate receptor shows that all have sequence similarities and suggests that all are homologous. 相似文献
14.
Identification of a low affinity mannose 6-phosphate-binding site in domain 5 of the cation-independent mannose 6-phosphate receptor 总被引:1,自引:0,他引:1
Reddy ST Chai W Childs RA Page JD Feizi T Dahms NM 《The Journal of biological chemistry》2004,279(37):38658-38667
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity ( approximately 1 nm) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was approximately 300-fold lower (K(i) = 5.3 mm) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme beta-glucuronidase was also much lower (K(d) = 54 microm) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9. 相似文献
15.
Cation-independent mannose 6-phosphate receptor contains covalently bound fatty acid 总被引:2,自引:0,他引:2
The cation-independent mannose 6-phosphate receptor (215,000 daltons) was isolated from embryonic bovine tracheal cells and embryonic human skin fibroblasts labelled with [3H]palmitic acid. The tritium label was detected in the protein upon fluorographic analysis of SDS-polyacrylamide gels of the purified receptor. The label was not sensitive to hydroxylamine, methanolic KOH, or beta-mercaptoethanol, but labelled fatty acid was recovered from the protein by acidic methanolysis. Labelled receptor protein could not be isolated from cells grown in the presence of [3H]myristic acid. The results suggest the presence of amide-linked palmitic acid in the structure of the cation-independent mannose 6-phosphate receptor. 相似文献
16.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in the trafficking of newly synthesized mannose 6-phosphate-containing acid hydrolases to the lysosome. The receptor contains two high affinity carbohydrate recognition sites within its 15-domain extracytoplasmic region, with essential residues for carbohydrate recognition located in domain 3 and domain 9. Previous studies have shown that these two sites are distinct with respect to carbohydrate specificity. In addition, expression of truncated forms of the CI-MPR demonstrated that domain 9 can be expressed as an isolated domain, retaining high affinity (Kd approximately 1 nm) carbohydrate binding, whereas expression of domain 3 alone resulted in a protein capable of only low affinity binding (Kd approximately 1 microm) toward a lysosomal enzyme. In the current report the crystal structure of the N-terminal 432 residues of the CI-MPR, encompassing domains 1-3, was solved in the presence of bound mannose 6-phosphate. The structure reveals the unique architecture of this carbohydrate binding pocket and provides insight into the ability of this site to recognize a variety of mannose-containing sugars. 相似文献
17.
An immuno-affinity method for the purification of mannose 6-phosphate receptor proteins 总被引:1,自引:0,他引:1
In a recent study, we have developed an ELISA method to quantify the mannose 6-phosphate receptor (MPR) proteins [J. Biochem. Biophys. Methods 52 (2002) 111]. In the present study, we have used the goat MPR 300 antibody and peptide specific antibodies to human MPR 46 to develop simple and efficient immuno-affinity matrices, which can be used to purify the MPR proteins from goat liver in a single step. The identity of the immuno-affinity purified receptors is confirmed by their molecular masses as well as by their immunoreactivity. 相似文献
18.
Byrd JC Park JH Schaffer BS Garmroudi F MacDonald RG 《The Journal of biological chemistry》2000,275(25):18647-18656
The insulin-like growth factor II/mannose 6-phosphate receptor (IGF2R) interacts with lysosomal enzymes through two binding domains in its extracytoplasmic domain. We report in the accompanying article (Byrd, J. C., and MacDonald, R. G. (2000) J. Biol. Chem. 275, 18638-18646) that only one of the two extracytoplasmic mannose 6-phosphate (Man-6-P) binding domains is necessary for high affinity Man-6-P ligand binding, suggesting that, like the cation-dependent Man-6-P receptor, oligomerization of the IGF2R contributes to high affinity interaction with lysosomal enzymes. In the present study, we have directly characterized both naturally occurring and engineered forms of the IGF2R for their ability to form oligomeric structures. Whereas gel filtration chromatography suggested that purified bovine IGF2R species exist in a monomeric form, native gel electrophoresis allowed for the separation of dimeric and monomeric forms of the receptors with distinct phosphomannosyl ligand binding characteristics. The ability of the IGF2R to form oligomeric complexes was confirmed and localized to the extracytoplasmic domain through the use of epitope-tagged soluble IGF2R constructs bearing deletions of the transmembrane and cytoplasmic domains. Finally, chimeric receptors were engineered containing the extracytoplasmic and transmembrane domains of the IGF2R fused to the cytoplasmic domain of the epidermal growth factor receptor with which dimerization of the chimeras could be monitored by measuring autophosphorylation. Collectively, these results show that the IGF2R is capable of forming oligomeric complexes, most likely dimers, in the absence of Man-6-P ligands. 相似文献
19.
Intracellular cycling of the cation-dependent mannose 6-phosphate receptor (CD-MPR) between different compartments is directed by signals localized in its cytoplasmic tail. A di-aromatic motif (Phe18-Trp19 with Trp19 as the key residue) in its cytoplasmic tail is required for the sorting of the receptor from late endosomes back to the Golgi apparatus. However, the cation-independent mannose 6-phosphate receptor (CI-MPR) lacks such a di-aromatic motif. Therefore the ability of amino acids other than aromatic residues to replace Trp19 in the CD-MPR cytoplasmic tail was tested. Mutant constructs with bulky hydrophobic residues (valine, isoleucine, or leucine) instead of Trp19 exhibited 30-60% decreases in binding to the tail interacting protein of 47 kDa (Tip47), a protein mediating this transport step, and partially prevented receptor delivery to lysosomes. Decreasing hydrophobicity of residues at position 19 resulted in further impairment of Tip47 binding and an increase of receptor accumulation in lysosomes. Intriguingly, mutants mislocalized to lysosomes did not completely co-localize with a lysosomal membrane protein, which might suggest the presence of subdomains within lysosomes. These data indicate that sorting of the CD-MPR in late endosomes requires a distinct di-aromatic motif with only limited possibilities for variations, in contrast to the CI-MPR, which seems to require a putative loop (Pro49-Pro-Ala-Pro-Arg-Pro-Gly55) along with additional hydrophobic residues in the cytoplasmic tail. This raises the possibility of two separate binding sites on Tip47 because both receptors require binding to Tip47 for endosomal sorting. 相似文献
20.
L J Olson J Zhang Y C Lee N M Dahms J J Kim 《The Journal of biological chemistry》1999,274(42):29889-29896
Mannose 6-phosphate receptors (MPRs) play an important role in the targeting of newly synthesized soluble acid hydrolases to the lysosome in higher eukaryotic cells. These acid hydrolases carry mannose 6-phosphate recognition markers on their N-linked oligosaccharides that are recognized by two distinct MPRs: the cation-dependent mannose 6-phosphate receptor and the insulin-like growth factor II/cation-independent mannose 6-phosphate receptor. Although much has been learned about the MPRs, it is unclear how these receptors interact with the highly diverse population of lysosomal enzymes. It is known that the terminal mannose 6-phosphate is essential for receptor binding. However, the results from several studies using synthetic oligosaccharides indicate that the binding site encompasses at least two sugars of the oligosaccharide. We now report the structure of the soluble extracytoplasmic domain of a glycosylation-deficient form of the bovine cation-dependent mannose 6-phosphate receptor complexed to pentamannosyl phosphate. This construct consists of the amino-terminal 154 amino acids (excluding the signal sequence) with glutamine substituted for asparagine at positions 31, 57, 68, and 87. The binding site of the receptor encompasses the phosphate group plus three of the five mannose rings of pentamannosyl phosphate. Receptor specificity for mannose arises from protein contacts with the 2-hydroxyl on the terminal mannose ring adjacent to the phosphate group. Glycosidic linkage preference originates from the minimization of unfavorable interactions between the ligand and receptor. 相似文献