首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three HLA-B27 allospecific cytolytic T lymphocyte (CTL) clones were isolated by limiting dilution of HLA-B27-negative responder cells stimulated with HLA-B27.1-positive lymphoblastoid cells. These clones displayed three distinct reaction patterns when tested for their lytic ability against target cells expressing various structurally defined HLA-B27 subtypes. One of the clones was specific for HLA-B27.1; a second CTL clone reacted only with B27.1 and, less efficiently, with B27.2; the third clone recognized both B27.1 and B27f targets but not cells expressing any other B27 subtype. These results indicate that HLA-B27f is a functional variant amenable to differential recognition by alloreactive CTL. A correlation of the structure of the HLA-B27 subtypes with the reactivity of these clones revealed that multiple B27-specific alloreactive CTL are activated against epitopes of the HLA-B27.1 molecule sharing common structural features. This illustrates the complexity and fine specificity of the allogeneic CTL response against class I HLA antigens and suggests that their immunodominant regions are those which are capable of eliciting a diverse polyclonal response against each of these regions, rather than inducing the selective expansion of a single T cell clone.  相似文献   

2.
The structure of a new HLA-B27 subtype antigen B27.4(B27D), distinguishable from the HLA-B27.1, B27.2, and B27.3 subtypes by cytolytic T lymphocytes and isoelectric focusing, has been established by comparative peptide mapping and sequence analysis. HLA-B27.4 differs from the main B27.1 subtype in the same two changes of aspartate-77 to serine-77 and valine-152 to glutamate-152, which distinguish the B27.1 and B27.3 subtypes. In addition, there are two other amino acid changes of histidine-114 to aspartate-114 and of aspartate-116 to tyrosine-116, which are unique to B27.4. The close structural relationship between B27.3 and B27.4 explains the similarity of these two subtypes in terms of T cell recognition. The presence of the two single amino acid differences between B27.3 and B27.4 within a span of three residues in the linear sequence provides a new example, suggesting that gene conversion-like mechanisms play a major role in the diversification of HLA-B27. A comparison of the structure of HLA-B27.4 with those of B27.1, B27.2, and B27.3 in the context of their ethnic distribution suggests that the diversification of the HLA-B27 antigens is an ongoing process that has continued after the separation of the major ethnic groups. A tentative evolutionary model for HLA-B27 polymorphism is proposed.  相似文献   

3.
Functional dissection of HLA-B27 subtypes using alloreactive or B27-restricted CTL has shown that the structurally related B*2704 and B*2706 are the most distant subtypes relative to the prototype B*2705. In particular, previous studies have failed to find anti-B*2705 CTL cross-reacting with B*2704 or B*2706. Such failure can be accounted for by the drastic effect on T cell recognition of the change at residue 152 in both subtypes relative to B*2705, as established with site-directed mutants. B*2704 and B*2706 are also related in ethnic distribution, as they are restricted to Orientals, jointly being the predominant HLA-B27 subtypes in this population. As far as it is known, there are no differences relative to B*2705 in their linkage to ankylosing spondylitis. In our study, 5 of 13 examined anti-B*2705 limiting dilution CTL lines from a particular HLA-B27- individual were shown to crossreact with B*2704, B*2706 or both. The monoclonal nature of this cross-reaction was established by cold target competition analysis. This result demonstrates that the apparent differences in T cell antigenicity among anti-B27 subtypes are strongly influenced by the responder individual, as the spectrum of clonal specificities in anti-B27 responses may show significant differences among unrelated responders. Fine specificity differences among the cross-reactive CTL allowed unambiguous functional distinction between B*2704 and B*2706. The molecular basis of such cross-reactivity was examined by correlating CTL reaction patterns with the structure of both subtypes, which differ only by two residues located in the beta-pleated sheet bottom of the peptide binding site, and with site-directed mutants mimicking HLA-B27 subtype polymorphism. The results suggest that: 1) distinct peptides are involved in the allospecific epitopes recognized by the various crossreactive CTL, and 2) B*2704, B*2706, and B*2705 differ in their peptide-presenting specificity, but can present some identical or structurally similar peptides.  相似文献   

4.
Endogenous peptides constitutively bind to class I MHC Ag and are thought to be integral parts of allospecific T cell epitopes. However, allospecific TCR can recognize structural features of the alloantigen as foreign. To define some crucial parameters determining HLA-B27 allorecognition, the structure of TCR alpha- and beta-chains from HLA-B27-specific CTL was analyzed. A strategy, based on V alpha and V beta family-specific oligonucleotides, was used for specific amplification and direct sequencing of TCR-alpha and -beta cDNA. We observed nonrandom usage of V beta segments and recurrent structural motifs within beta-chain junctional regions. In contrast, no structural restrictions were apparent among alpha-chains, even from CTL clones of related fine specificity. These results indicate an asymmetric contribution of TCR alpha- and beta-chains to HLA-B27 allospecificity among the CTL clones analyzed. They suggest recognition of multiple peptides and involvement of beta-chain junctional regions in recognizing shared motifs among some of these peptides.  相似文献   

5.
In this study, we found that adding iodoacetamide to the homogenization buffer used in the preparation of mouse or rat liver plasma membranes resulted in an increase of insulin receptor autophosphorylation by 4-5-fold and receptor kinase activity by about 2-fold. Similar effects were obtained with iodoacetate and p-chloromercuriphenyl sulfonate. The effect of iodoacetamide was minimal when it was added to membranes prepared without the thiol reagent. The enhancing effect of iodoacetamide on insulin receptor autophosphorylation was the result of a more than 2-fold decrease in the Km and a more than 3-fold increase in Vmax for ATP. The presence of iodoacetamide in the preparation of plasma membranes also greatly increased the solubilization of the insulin receptor from the plasma membrane by Triton X-100. We propose that iodoacetamide acts to alkylate some unknown thiols released during tissue homogenization and that in its absence these thiols formed mixed disulfides with the insulin receptor, thus adversely affecting the process of receptor activation by insulin.  相似文献   

6.
Cys-67 of HLA-B27 is located in the B pocket, which determines peptide-binding specificity. We analyzed effects of the Cys-67 --> Ser mutation on cell surface expression, peptide specificity, and T-cell recognition of HLA-B*2705. Surface expression was assessed with antibodies recognizing either native or unfolded HLA proteins. Whereas native B*2705 molecules predominated over unfolded ones, this ratio was reversed in the mutant, suggesting lower stability. Comparison of B*2705- and Cys-67 --> Ser-bound peptides revealed that the mutant failed to bind approximately 15% of the B*2705 ligands, while binding as many novel ones. Two peptides with Gln-2 found in both B*2705 and Cys-67 --> Ser are the first demonstration of natural B*2705 ligands lacking Arg-2. Other effects of the mutation on peptide specificity were: 1) average molecular mass of natural ligands higher than for B*2705, 2) bias against small residues at peptide position (P) 1, and 3) increased P2 permissiveness. The results suggest that the Cys-67 --> Ser mutation weakens B pocket interactions, leading to decreased stability of the mutant-peptide complexes. This may be partially compensated by interactions involving bulky P1 residues. The effect of the mutation on allorecognition was consistent with that on peptide specificity. Our results may aid understanding of the pathogenetic role of HLA-B27 in spondyloarthropathy.  相似文献   

7.
The peptide binding site of HLA-B27 and other class I Ag consists of a series of pockets that bind peptide side chains. Two of these pockets interact with the amino-terminal peptide residue (pocket A) and with the highly conserved second residue (pocket B). In this study, the role of pockets A and B in HLA-B27-specific T cell allorecognition has been analyzed. Four HLA-B27 mutants with single or double changes in pocket B (24T----A, 45E----M, 67C----V, and 24,67T,C----A,V) and three mutants with single changes in pocket A (163E----T, 167W----S, and 171Y----H) were constructed by site-directed mutagenesis and expressed in HMy2.C1R cells after DNA-mediated gene transfer. These transfectants were used as target cells in cytotoxicity assays with a series of HLA-B27-specific CTL. All the mutations analyzed affected allorecognition by a significant proportion of the CTL tested, but no single change abrogated recognition by all CTL. The global effects of each mutation on allorecognition were comparable to one another, except for the effect of the change at position 67, which was smaller. The behavior of individual CTL with the mutants was very diverse, ranging from CTL that did not recognize most of the mutants to CTL recognizing all of them. Thus, some alloreactive CTL can withstand drastic alterations in pockets A and B. Two CTL showed heteroclytic effects towards the V67 and M45 mutants. CTL behavior with the H171 mutant was closely parallel to that with the B*2703 subtype, having a single Y----H change at position 59. This parallelism correlates with the similar role of Tyr59 and Tyr171 in establishing hydrogen bonds with the amino termini of HLA-B27-bound peptides. The results demonstrate that altering the structure of pockets that interact with the amino-terminal first and second residues of HLA-B27-bound peptides significantly affects recognition by alloreactive CTL, and they strongly suggest widespread peptide involvement in HLA-B27 allorecognition.  相似文献   

8.
PC12, an NGF responsive cell line, exhibits two classes of NGF receptors which we designate “Fast” and “Slow.” Fast receptors, accounting for 75% of specific NGF binding, are distinguished by their rapid rates for association and dissociation of 125I-NGF. At 37°C, binding of 125I-NGF to Fast receptors is 5-fold more rapid than to Slow receptors and dissociation of 125I-NGF from Fast receptors is 40-fold more rapid than from Slow receptors. No evidence was obtained for a ligand-induced conversion of receptors from Fast to Slow characteristics. Scatchard analysis of binding experiments indicates that PC12 cells possess 60,000 specific receptors for NGF of which 15,000 are of the Slow class. Despite having very different kinetic constants, Slow and Fast receptors have similar equilibrium binding constants (about 2 × 10?10 M) due to cancelling effects of differing association and dissociation rates. Brief digestion of PC12 cells with trypsin before addition of NGF inactivates essentially all Fast receptors without significantly affecting Slow receptors. Therefore Fast and Slow classes of receptors must exist prior to addition of NGF, and the observed receptor heterogeneity is not due to ligand-induced changes. 125I-NGF bound to Slow receptors is preferentially associated with preparations of Triton X-100 insoluble cytoskeletons, while 125I-NGF bound to Fast receptors is solubilized by this procedure. Cytoskeletally associated NGF is almost exclusively associated with the extranuclear cytoskeletal matrix rather than with the nucleus itself. Preparation of nuclei by various methods suggests that the presence of contaminating cytoskeletal elements should be considered in evaluating the existence of translocation and binding of NGF to the nucleus. Inhibition of endocytotic internalization of NGF either by lowering of temperature to O°C or by preincubation of cells with sodium azide in medium lacking glucose does not reduce the slowly released component of bound NGF, nor alter its cytoskeletal association. The possible functional roles of Slow and cytoskeletal receptors are discussed.  相似文献   

9.
Dynamic programming algorithms that predict RNA secondary structure by minimizing the free energy have had one important limitation. They were able to predict only one optimal structure. Given the uncertainties of the thermodynamic data and the effects of proteins and other environmental factors on structure, the optimal structure predicted by these methods may not have biological significance. We present a dynamic programming algorithm that can determine optimal and suboptimal secondary structures for an RNA. The power and utility of the method is demonstrated in the folding of the intervening sequence of the rRNA of Tetrahymena. By first identifying the major secondary structures corresponding to the lowest free energy minima, a secondary structure of possible biological significance is derived.  相似文献   

10.
Possession of HLA-B27 (B27) strongly predisposes to the development of spondyloarthritis. B27 forms classical heterotrimeric complexes with β(2)-microglobulin (β2m) and peptide and (β2m free) free H chain (FHC) forms including B27 dimers (termed B27(2)) at the cell surface. In this study, we characterize the interaction of HLA-B27 with LILR, leukocyte Ig-like receptor (LILR)B1 and LILRB2 immune receptors biophysically, biochemically, and by FACS staining. LILRB1 bound to B27 heterotrimers with a K(D) of 5.3 ± 1.5 μM but did not bind B27 FHC. LILRB2 bound to B27(2) and B27 FHC and B27 heterotrimers with K(D)s of 2.5, 2.6, and 22 ± 6 μM, respectively. Domain exchange experiments showed that B27(2) bound to the two membrane distal Ig-like domains of LILRB2. In FACS staining experiments, B27 dimer protein and tetramers stained LILRB2 transfectants five times more strongly than B27 heterotrimers. Moreover, LILRB2Fc bound to dimeric and other B27 FHC forms on B27-expressing cell lines more strongly than other HLA-class 1 FHCs. B27-transfected cells expressing B27 dimers and FHC inhibited IL-2 production by LILRB2-expressing reporter cells to a greater extent than control HLA class I transfectants. B27 heterotrimers complexed with the L6M variant of the GAG KK10 epitope bound with a similar affinity to complexes with the wild-type KK10 epitope (with K(D)s of 15.0 ± 0.8 and 16.0 ± 2.0 μM, respectively). Disulfide-dependent B27 H chain dimers and multimers are stronger ligands for LILRB2 than HLA class I heterotrimers and H chains. The stronger interaction of B27 dimers and FHC forms with LILRB2 compared with other HLA class I could play a role in spondyloarthritis pathogenesis.  相似文献   

11.
Despite a widely accepted role of arrestins as "uncouplers" of G protein-coupled receptor (GPCR) signaling, few studies have demonstrated the ability of arrestins to affect second messenger generation by endogenously expressed receptors in intact cells. In this study we demonstrate arrestin specificity for endogenous GPCRs in primary cultures of human airway smooth muscle (HASM). Expression of arrestin-green fluorescent protein (ARR2-GFP or ARR3-GFP) chimeras in HASM significantly attenuated isoproterenol (beta(2)-adrenergic receptor (beta(2)AR)-mediated)- and 5'-(N-ethylcarboxamido)adenosine (A2b adenosine receptor-mediated)-stimulated cAMP production, with fluorescent microscopy demonstrating agonist-promoted redistribution of cellular ARR2-GFP into a punctate formation. Conversely, prostaglandin E(2) (PGE(2))-mediated cAMP production was unaffected by arrestin-GFP, and PGE(2) had little effect on arrestin-GFP distribution. The pharmacological profile of various selective EP receptor ligands suggested a predominantly EP2 receptor population in HASM. Further analysis in COS-1 cells revealed that ARR2-GFP expression increased agonist-promoted internalization of wild type beta(2)AR and EP4 receptors, whereas EP2 receptors remained resistant to internalization. However, expression of an arrestin whose binding to GPCRs is largely independent of receptor phosphorylation (ARR2(R169E)-GFP) enabled substantial agonist-promoted EP2 receptor internalization, increased beta(2)AR internalization to a greater extent than did ARR2-GFP, yet promoted EP4 receptor internalization to the same degree as did ARR2-GFP. Signaling via endogenous EP4 receptors in CHO-K1 cells was attenuated by ARR2-GFP expression, whereas ARR2(R169E)-GFP expression in HASM inhibited EP2 receptor-mediated cAMP production. These findings demonstrate differential effects of arrestins in altering endogenous GPCR signaling in a physiologically relevant cell type and reveal a variable dependence on receptor phosphorylation in dictating arrestin-receptor interaction.  相似文献   

12.
Alloreactive CTL responses generate a great variety of clonal specificities. Such diversity may be related to recognition of multiple peptides constitutively bound to any given MHC alloantigen. Among human alloreactive CTL, only a fraction of the clones lyse mouse P815 cells expressing class I HLA proteins. In this study the fine specificity of HLA-B27 allorecognition on human or mouse cells by five human HLA-B27-specific CTL clones was comparatively analyzed. This was done to examine what degree of variation in epitope structure is compatible with recognition of HLA Ag on mouse cells. Nine site-specific HLA-B27 mutants were expressed on both human and mouse cells, after DNA-mediated gene transfer, to construct two analogous series of target cells. The reaction patterns of four of the five CTL clones with these cell panels were compatible with conservation of their corresponding epitopes upon expression of HLA-B27 on mouse cells. The reaction pattern of the fifth clone was different with either cell panel, indicating that its epitope was structurally altered on mouse cells. It also suggested a selectively increased expression of the determinant on these cells. The results suggest that most of the epitopes recognized by allospecific CTL clones reacting across species are either independent of any bound peptide or involve identical peptides from both cell types. However, some of these clones recognize alloantigen-bound peptides that are somewhat different in structure depending on the cell type, and may be expressed at the mouse cell surface in greater amounts. Such peptides could arise from related proteins in both species, and be polymorphic as a result of phylogenetic divergence.  相似文献   

13.
Primosome assembly sites are complex DNA structures that share common functions (they elicit the DNA-dependent ATPase of replication factor Y from Escherichia coli and serve as origins of complementary strand DNA synthesis), but display little sequence homology. In order to ascertain a common basis for factor Y-DNA recognition, a primosome assembly site and its mutated derivatives have been functionally and structurally analyzed. Under conditions in which they lose the capacity to function as ATPase effectors these DNA templates have been (i) assayed for their ability to bind factor Y, and (ii) probed, with pancreatic DNase, for structural alterations. In this ATPase-inactivating environment (suboptimal concentrations of MgCl2 and NaCl, and high levels of the E. coli single-stranded DNA binding protein), factor Y does not bind to its cognate DNA and the DNase cleavage pattern characteristic of this site is perceptibly changed: compared to the DNase digest obtained under activating conditions, cleavage is notably decreased in the 5' half of the site and enhanced at the 3' end. The results of this study strongly indicate that the structure of the primosome assembly site under analysis consists of two hairpins which interact with each other. When the sites of pancreatic DNase attack are plotted on the proposed double hairpin structure, the 5' cleavage sites all map to one duplex while the 3' sites map to the other. The observation that, under factor Y ATPase-activating conditions, the 3' hairpin is largely refractory to the action of pancreatic DNase indicates that tertiary interactions between the two duplexes render a portion of the DNA structure inaccessible to the nuclease.  相似文献   

14.
This Letter describes the synthesis and structure–activity-relationships (SAR) of isoform-selective PLD inhibitors. By virtue of the installation of alternative halogenated piperidinyl benzimidazolone privileged structures, in combination with a key (S)-methyl group, novel PLD inhibitors with low nM potency and unprecedented levels of PLD1 isoform selectivity (~1700-fold) over PLD2 were developed.  相似文献   

15.
Epidermal growth factor (EGF) receptor (EGFR) modulates mitosis and apoptosis through signaling by its high-affinity (HA) and low-affinity (LA) EGF-binding states. The prevailing model of EGFR activation—derived from x-ray crystallography—involves the transition from tethered ectodomain monomers to extended back-to-back dimers and cannot explain these EGFR affinities or their different functions. Here, we use single-molecule Förster resonant energy transfer analysis in combination with ensemble fluorescence lifetime imaging microscopy to investigate the three-dimensional architecture of HA and LA EGFR-EGF complexes in cells by measuring the inter-EGF distances within discrete EGF pairs and the vertical distance from EGF to the plasma membrane. Our results show that EGFR ectodomains form interfaces resulting in two inter-EGF distances (∼8 nm and < 5.5 nm), different from the back-to-back EGFR ectodomain interface (∼11 nm). Distance measurements from EGF to the plasma membrane show that HA EGFR ectodomains are oriented flat on the membrane, whereas LA ectodomains stand proud from it. Their flat orientation confers on HA EGFR ectodomains the exclusive ability to interact via asymmetric interfaces, head-to-head with respect to the EGF-binding site, whereas LA EGFRs must interact only side-by-side. Our results support a structural model in which asymmetric EGFR head-to-head interfaces may be relevant for HA EGFR oligomerization.  相似文献   

16.
D Givol  A Yayon 《FASEB journal》1992,6(15):3362-3369
Since 1989, the receptors for fibroblast growth factors (FGFs) were cloned and characterized as a subgroup of the family of receptor tyrosine kinases. Four FGF receptor genes were identified, all of which encode membrane-bound glycoproteins containing three immunoglobulin (Ig) -like domains at the extracellular region, where only two of these domains are involved in ligand binding. Three unique features characterize the FGF receptors: 1) overlapping recognition and redundant specificity, where one receptor may bind with a similar affinity several of the seven known FGFs and one FGF may bind similarly to several distinct receptors. 2) The binding of FGFs to their receptors is dependent on the interaction of FGF with cell surface heparan sulfate proteoglycans. 3) A multitude of isoforms of cell-bound or secreted receptors are produced by the same gene. The gene structure of these receptors revealed two major mechanisms that are responsible for the formation of the diverse forms: alternative mRNA splicing, resulting in deletions or alternate exons usage, and internal polyadenylation, resulting in truncated products. These are reminiscent of mechanisms that also operate in the immunoglobulin family to generate diversity and to produce either secreted or cell-bound molecules. Tissue-specific alternative splicing in FGF receptors allows for the generation of two distinct receptors from a single gene because alternative exons determine the sequence of the COOH-terminal half of the third Ig-like domain involved in ligand binding. This represents a novel genetic mechanism to generate receptor diversity and specificity and to increase receptor repertoire.  相似文献   

17.
Luminal proteins of the endoplasmic reticulum (ER) share a common carboxy-terminal tetrapeptide which is necessary and sufficient for their retention in the ER. In animal cells this retention signal is usually KDEL, whereas the yeast Kluyveromyces lactis uses the closely related sequences HDEL and DDEL. The yeast ERD2 gene has been shown to determine the capacity and specificity of the retention system, implying that it encodes a sorting receptor. This receptor is thought to retrieve escaped ER proteins from the Golgi, where a human homologue of this protein has been located. This dual function of binding and retrieval requires a receptor with highly specific binding at a specific location in the cell (Golgi but not ER). Here, a region of the ERD2 protein responsible for the specificity of ligand recognition has been identified using three independent approaches. A single amino acid residue is shown to selectively affect HDEL retention: substitution of residue 51 of the K. lactis receptor is sufficient to abolish recognition of HDEL but not DDEL, generating a novel retention phenotype.  相似文献   

18.
The role of the low avidity 40,000 dalton receptor for IgG (Fc gamma R) present on K562 and U937 cells in sensitivity to natural killing (NK) was studied by using a murine monoclonal antibody (mAb) specific for the 40,000 dalton Fc gamma R (alpha Fc gamma R mAb). Pretreatment of K562 target cells with intact alpha Fc gamma R mAb or its Fab fragment or anti-transferrin receptor (alpha TFR) mAb partially blocked in a dose-dependent manner, NK activity to K562 cells. However, combined pretreatment with alpha Fc gamma R and alpha TFR mAb completely blocked NK activity against K562 targets. As compared with K562 cells, lower levels of NK were elicited against Molt-4, U937, HL-60, and Daudi targets. Although NK activity to Molt-4 targets was not affected by alpha Fc gamma R mAb, it was fully prevented by pretreatment with alpha TFR mAb. In contrast, NK to U937 cells was not influenced by alpha TFR mAb, but it was strongly inhibited by alpha Fc gamma R mAb. The resistance of 3H-TdR-prelabeled adherent HEp-2 cells to natural cell-mediated cytotoxicity was not affected by either mAb. Lectin-dependent cell-mediated cytotoxicity (LDCC) against HEp-2 cells due to the presence of concanavalin A, and was completely abrogated by pretreatment of the targets with alpha TFR mAb, but was unaffected by alpha Fc gamma R mAb. By use of the flow cytometer, a significant correlation was detected between the relative expression of 40,000 dalton Fc gamma R and the susceptibility to NK, whereas the expression of TFR was discordant from NK sensitivity. As determined in the single cell cytotoxicity assay alpha Fc gamma R mAb reduced the frequency of target binding effector cells without affecting the number of dead bound targets. This pattern of inhibition was found against both K562 and U937 targets. Alternatively, alpha TFR mAb inhibited both binding and killing of K562 and Molt-4 targets. Because pretreatment of HEp-2 cells with alpha TFR mAb did not influence conjugate formation, the blocking of LDCC to HEp-2 cells by alpha TFR mAb can be related to post-binding events. These data show that although both the 40,000 dalton Fc gamma R and the TFR can be target structures for NK cell recognition, the TFR may also play an important role in the post-binding events.  相似文献   

19.
Prior absorption of normal human serum (NHS) or C2-deficient human serum (C2D) with zymosan at 0 degrees C results in diminished consumption of C3 and factor B during subsequent incubation of the sera in Mg-EGTA buffer with zymosan at 37 degrees C for 30 min. An acid eluate from the zymosan restores the defect of absorbed NHS and C2D, and also enhances C3 and factor B utilization in hypogammaglobulinemic serum (H gamma S) in a dose-dependent fashion. The activity is specific in that the eluate from zymosan fails to enhance C3 and B depletion in H gamma S or absorbed NHS by lipopolysaccharide or Sepharose. The active component of th zymosan eluate emerges from both Sepharose 4B and Sephacryl S-200 in the region of molecules with m.w. of 150,000. Absorption with protein A-Sepharose removes the activity, demonstrating that it is IgG. Digestion of the IgG with pepsin fails to diminish activity, indicating that the Fc region is not required for activity; reduction to monovalent Fab' fragments, however, abrogates activity. When IgG antibody is bound to Protein A-Sepharose, it fails to enhance C3 depletion in H gamma S by Sepharose, indicating that binding of IgG antibody by the Fab region is necessary for enhancement of alternative pathway activity in human serum.  相似文献   

20.
Arrestins selectively bind to phosphorylated activated forms of their cognate G protein-coupled receptors. Arrestin binding prevents further G protein activation and often redirects signaling to other pathways. The comparison of the high-resolution crystal structures of arrestin2, visual arrestin, and rhodopsin as well as earlier mutagenesis and peptide inhibition data collectively suggest that the elements on the concave sides of both arrestin domains most likely participate in receptor binding directly, thereby dictating its receptor preference. Using comparative binding of visual arrestin/arrestin2 chimeras to the preferred target of visual arrestin, light-activated phosphorylated rhodopsin (PRh*), and to the arrestin2 target, phosphorylated activated m2 muscarinic receptor (P-m2 mAChR*), we identified the elements that determine the receptor specificity of arrestins. We found that residues 49-90 (beta-strands V and VI and adjacent loops in the N-domain) and 237-268 (beta-strands XV and XVI in the C-domain) in visual arrestin and homologous regions in arrestin2 are largely responsible for their receptor preference. Only 35 amino acids (22 of which are nonconservative substitutions) in the two elements are different. Simultaneous exchange of both elements between visual arrestin and arrestin2 fully reverses their receptor specificity, demonstrating that these two elements in the two domains of arrestin are necessary and sufficient to determine their preferred receptor targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号