首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously described and characterized RNase T1 RNA fingerprints of an N-, a B-, and five B leads to NB-tropic murine leukemia viruses derived from BALB/c mice (Faller and Hopkins, J. Virol. 23:188-195, 1977, and J. Virol. 24:609-617, 1977). These viruses share the majority of their large RNase T1-resistant oligonucleotides, but each possesses some "unique" oligonucleotides relative to the others. We have ordered the large T1-resistant oligonucleotides of the N-, the B-, and one NB-tropic virus relative to the 3' end of their genomes to obtain oligonucleotide maps. These maps indicate that (i) the large T1 oligonucleotides shared by the N-, B-, and NB-tropic viruses probably occupy the same relative positions on their genomes; (ii) the 14 T1 oligonucleotides that differ between the N- and B-tropic viruses are derived from regions scattered along the genomes; and (iii) an oligonucleotide that is present in five NB-tropic viruses but not in their B-tropic virus progenitors lies toward the 5' end of the NB-tropic virus oligonucleotide map.  相似文献   

2.
Previous genetic and biochemical studies identified three large RNAase T1-resistant oligonucleotides, each associated with either the N-, B- or NB-tropism of murine C-type viruses of BALB/c origin. These oligonucleotides were shown to lie in the 5' third of the oligonucleotide maps of their respective viruses. We sequenced the three oligonucleotides and found that they share a 10 base sequence. Together these observations provide good evidence that the determinants of N-, B- or NB-tropism monitored by the three oligonucleotides are allelic. The oligonucleotides associated with N- and B-tropism differ in sequence at four of sixteen nucleotides, while the B- and NB-tropism-associated oligonucleotides differ in sequence by only one base out of sixteen. These results are consistent with the possibilities that B-tropic viruses may arise from N-tropic viruses by recombination, while NB-tropic viruses may arise from B-tropic virus by mutation. An unexplained finding was that a 10 base sequence present in the oligonucleotide associated with N-tropism is also found in the 3' third of the genomes of the N-, B- and NB-tropic viruses studied.  相似文献   

3.
We used two-dimensional gel electrophoresis to obtain fingerprints of 32P-labeled RNase T1-resistant oligonucleotides derived from the genomes of an N- and a B-tropic murine leukemia virus of BALB/c. These viruses share approximately 30 large T1-resistant oligonucleotides. In addition, there are eight large oligonucleotides unique to the N-tropic virus, and there are six B-trophic virus-specific oligonucleotides. Viruses, designated XLP-N, which appear by biological criteria and analysis of virion proteins to be recombinants between these N- and B-tropic viruses, possess some but not all of the N or B virus-specific oligonucleotides.  相似文献   

4.
Retroviruses have been isolated from the tissues of human leukemia patients. Previous studies have shown that these isolates share some antigenic determinants with the family of viruses isolated from the woolly monkey and gibbon ape and that they exhibit partial nuclei acid homology with this same group of viruses. We have compared the RNAs of the viruses by two-dimensional polyacrylamide gel electrophoresis of the large RNase T1-resistant oligonucleotides. The degree of sequence identity between the RNAs was determined by the similarity of their RNase T1-resistant oligonucleotide pattern on gels, fingerprints, and in some cases by partial sequence analysis of individual oligonucleotides. This technique permits us to determine the degree of sequence identity among related RNA species. From our studies we conclude that viruses isolated from the tissues of two human leukemia patients, A1476 and SKA 21-3, as well as some subcultures of a virus isolated from the leukemic tissues of a third patient, HL23V, are closely related to the wooly monkey virus. However, the fingerprints of other HL23 viral isolates are very similar to that of GaLVSF, a gibbon ape leukemia virus isolated from a lymphosarcoma.  相似文献   

5.
The relationships among the genomes of various rhabdoviruses belonging to the vesicular stomatitis virus subgroup were analyzed by an oligonucleotide fingerprinting technique. Of 10 vesicular stomatitis viruses, Indiana serotype (VSV Indiana), obtained from various sources, either no, few, or many differences were observed in the oligonucleotide fingerprints of the 42S RNA species extracted from standard B virions. Analyses of the oligonucleotides obtained from RNA extracted from three separate preparations of VSV Indiana defective T particles showed that their RNAs contain fewer oligonucleotides than the corresponding B particle RNA species. The fingerprints of RNA obtained from five VSV New Jersey serotype viruses were easily distinguished from those of the VSV Indiana isolates. Three of the VSV New Jersey RNA fingerprints were similar to each other but quite different from those of the other two viruses. The RNA fingerprints of two Chandipura virus isolates (one obtained from India and one from Nigeria) were also unique, whereas the fingerprint of Cocal virus RNA was unlike that of the serologically related VSV Indiana.  相似文献   

6.
Comparative analysis of the genomes of feline leukemia viruses.   总被引:2,自引:2,他引:0       下载免费PDF全文
The genomes of several strains of feline leukemia virus (FeLV) were compared by two-dimensional polyacrylamide gel electrophoresis of the large RNase T1-resistant oligonucleotides of the 70S RNA. Differences between each strain of FeLV tested were detected by this method. We estimate that the degree of sequence identity between the viruses is: FeLV A (Glasgow-1) to FeLV B (Snyder-Theilen), 52%; FeLV A (Glasgow-1) to FeLV C(Sarma), 66%; FeLV B(Snyder-Theilen) to FeLV C (Sarma), 37%. The fingerprints of two independent isolates of FeLV strains of subgroup A (Glasgow-1 and Rickard) were detectably different. We conclude that the RNase T1 oligonucleotide fingerprint pattern provides a useful tool for identification of FeLV strains.  相似文献   

7.
We used two-dimensional gel electrophoresis to obtain fingerprints of RNase T1-resistant oligonucleotides derived from the genomes of Akv-1 and Akv-2 type C viruses of AKR mice. The fingerprints of these two viruses look identical. The products of pancreatic RNase digestion of corresponding oligonucleotides of the two viruses were indistinguishable. These observations are consistent with, but not proof of, the possible identity of the genomes of the Akv-1 and Akv-2 viruses and, thus, of the viral genetic material believed to comprise the Akv-1 and Akv-2 loci of AKR mice.  相似文献   

8.
We have examined the electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels of three virion proteins of B-tropic murine leukemia virus from BALB/c and six of its NB-tropic derivatives. The gp70 protein and a 13,000-molecular-weight virion protein tentatively identified as p15 of the NB-tropic viruses migrated with the corresponding B virus proteins. However, the major internal structural protein of type C virions, p30, of all the NB-tropic viruses migrated more rapidly than the p30 of their B virus progenitor. Although this change in p30 raises the possibility that p30 may be involved in determining the N-, B-, or NB-tropism of MuLV's, it is also possible that the change accompanies but does not directly determine the change in tropsim.  相似文献   

9.
Previous analysis of the virion proteins of an N- and a B-tropic type C virus of BALB/c mice, of 16 N-tropic recombinants (XLPN viruses) between these viruses, and of eight NB-tropic viruses derived from the B-tropic virus suggested that among these closely related viruses N-, B-, or NB-tropism was associated with the electrophoretic mobility of p30 on sodium dodecyl sulfate-polyacrylamide gels, and thus that p30 might determine this phenotype. To obtain further evidence for the association of structural markers of p30 with N-, B-, or NB-tropism, we have analyzed the p30's of these same viruses by using two-dimensional tryptic peptide mapping and slab gel isoelectric focusing. The results of these analyses suggest that (i) a single peptide unique to the N-tropic virus p30- is present in the p30 of all N-tropic recombinants; (ii) a single peptide unique to the B virus p30 is not present in p30's of the N-tropic recombinants, and this peptide is also absent in p30's of NB-tropic viruses derived from the B-tropic virus; and (iii) p30's of NB-tropic viruses possess a new tryptic peptide not found in the p30 of their B-tropic virus progenitors, and this new peptide is not found in the p30 of the N-tropic virus of BALB/c or the XLPN viruses. These results are consistent with the possibility that p30 may determine the N-, B-, or NB-tropism of murine leukemia viruses. In addition, these studies indicate that some of the N-tropic recombinants have experienced recombination within the p30 gene.  相似文献   

10.
G J Freeman  D D Rao  A S Huang 《Gene》1979,5(2):141-157
The single-stranded RNA genome of vesicular stomatitis virus (VSV, Indiana serotype, San Juan strain) yields approx. 75 RNase T1-resistant oligonucleotides ranging in size from 10 to 50 bases. Each of the five structural genes, isolated as duplex RNA molecules hybridized to complementary mRNA, contains two or more of these large oligonucleotides. One of the oligonucleotides is identified as part of the non-coding region near the 3' end of the genome. Comparison of these results with others indicate that the RNA sequence of VSV is apparently stable in the laboratory but not in the wild. RNase T1-resistant oligonucleotides are also shown for all five VSV mRN species. Whether the mRNA for these digestions are are isolated from duplex RNA molecules or as single-stranded RNA species, the oligonucleotide patterns for each mRNA are virtually identical, indicating that each mRNA is transcribed from contiguous sequences on the genome. Comparison with published oligonucleotide patterns obtained from other isolates of VSV or from VSV deletion mutants indicate that identity and changes in their genome structure can be correlated with specific structural genes.  相似文献   

11.
Low-infectious, nontransforming type C virus was isolated from an in vitro spontaneously transformed ST/a mouse cell line, ST-L1. The virus released by ST-L1 cells was NB-tropic and XC(-). It gave rise to very small peroxidase antibody plaques (PAP) in cultures which initially were nonproducing. Sodium dodecyl sulfate (SDS)-polyacrylamide gels of the structural proteins of the ST-L1 virus showed an envelope glycoprotein with an apparent mass of 65 kilodaltons (kdal). The mouse cells SC-1, BALB/3T3, and NIH/3T3 could be productively infected with cell-free supernatants from the ST-L1 cell line; however, virus was detected in supernatant fluids only after two to four subcultures of the infected cells. The virus thus produced was XC(+) and a large plaque former. The virus released from infected SC-1 cells was N-tropic, whereas the viruses from infected NIH/3T3 and BALB/3T3 cells were NB-tropic. The structural proteins of the N- and NB-tropic viruses could be distinguished on SDS polyacrylamide gels, the major dissimilarity being a difference in the mobility of the p30. All these viruses had an envelope glycoprotein with an apparent mass of 70 kdal. The infectivity of the viruses, measured as PAP per nanogram of p30, was 30- to 60-fold lower for the virus released from the ST-L1 cell line than that of the viruses after passage in SC-1, NIH/3T3, and BALB/3T3 cells. None of the viruses could infect rabbit or mink cells. Inoculation of the viruses into newborn mice showed that the ST-L1 virus was non-leukemogenic, whereas the NB-tropic virus selected from this after passage in BALB/3T3 or NIH/3T3 cells was highly leukemogenic. Viruses isolated from leukemic animals were indistinguishable with respect to host range and protein mobilities in SDS gels from the ones with which the mice were inoculated. Although the SC-1-selected virus was highly infectious in vitro, it was only weakly, if at all, leukemogenic.  相似文献   

12.
We have analyzed large RNase T1-resistant oligonucleotides derived from the genomes of 16 recombinants between N- and B-tropic murine leukemia viruses of BALB/c. The parental viruses, designated SP-N and LP-B, differ in several phenotypic or biochemically defined properties: N- or B-tropism; XC plaque morphology, electrophoretic mobility of three virion proteins (p15, p30, and gp70); ability to induce GIX antigen on infected cells; presence of 6 to 8 (out of 36 to 38 analyzable) large T1 oligonucleotides. One SP-N-specific T1 oligonucleotide was inherited by all 16 N-tropic recombinants and, thus, appears to be linked to N-tropism. This oligonucleotide lies in the 5' third of the oligonucleotide map of SP-N. One LP-B-specific T1 oligonucleotide was inherited by all 11 recombinants whose gp70 has an electrophoretic mobility like that of LP-B gp70 and that, like LP-B, fail to induce GIX antigen. This oligonucleotide lies in the 3' third of the oligonucleotide map of LP-B.  相似文献   

13.
The src genes of six different strains of avian sarcoma virus (ASV) were compared with those of a series of newly isolated sarcoma viruses, termed "recovery avian sarcoma viruses" (rASV's). The rASV's were isolated recently from chicken and quail tumors induced by transformation-defective (td) deletion mutants of Schmidt-Ruppin Rous sarcoma virus. The RNase T1-resistant oligonucleotide maps were constructed for the RNA genomes of different strains of ASV and td mutants. The src-specific sequences, characterized by RNase T1-resistant oligonucleotides ranging from 9 to 19 nucleotides long, were defined as those mapping between approximately 600 and 2,800 nucleotides from the 3' polyadenylate end of individual sarcoma viral RNAs, and missing in the corresponding td viral RNAs. Our results revealed that 12 src-specific oligonucleotides were highly conserved among several strains of ASV, including the rASV's, whereas certain strains of ASV were found to contain one to three characteristic src-specific oligonucleotides. We previously presented evidence supporting the idea that most of the src-specific sequences present in rASV RNAs are derived from cellular genetic information. Our present data indicate that the src genes of rASV's are closely related to other known ASVs. We conclude that the src genes of different strains of ASV and the cellular sarc sequences are of common origin, although some divergence has occurred among different viral src genes and related cellular sequences.  相似文献   

14.
The large RNase T1-resistant oligonucleotides of the nondefective (nd) Rous sarcoma virus (RSV): Prague RSV of subgroup B (PR-B), PR-C and B77 of subgroup C; of their transformation-defective (td0 deletion mutants: td PR-B, td PR-C, and td B77; and of replication-defective (rd) RSV(-) were completely or partially mapped on the 30 to 40S viral RNAs. The location of a given oligonucleotide relative to the poly(A) terminus of the viral RNAs was directly deduced from the smallest size of the poly(A)-tagged RNA fragment from which it could be isolated. Identification of distinct oligonucleotides was based on their location in the electrophoretic/chromatographic fingerprint pattern and on analysis of their RNase A-resistant fragments. The following results were obtained. (i) The number of large oligonucleotides per poly(A)-tagged ffagment increased with increasing size of the fragment. This implies that the genetic map is linear and that a given RNase T1-resistant oligonucleotides has, relative to the poly(A) end, the same location on all 30 to 40S RNA subunits of a given 60 to 70S viral RNA complex, (ii) Three sarcoma-specific oligonucleotides were identified in the RNAs of Pr-B, PR-C and B77 by comparison with the RNAs of the corresponding td viruses...  相似文献   

15.
We studied the RNA genomes of several wild mouse type C retroviruses by using RNase T1-oligonucleotide fingerprinting. The amphotropic and ecotropic viruses of field strain 1504 produced very similar oligonucleotide fingerprints, but each also had several unique oligonucleotides. All of these unique oligonucleotides were located in the env gene region and were probably responsible for the host range differences between these viruses, as well as the lymphomagenic and paralytogenic properties of the viruses. We obtained similar results with the amphotropic and ecotropic viruses of another field strain (4070), which was isolated from a mouse from a different trapping area. The amphotropic viruses of several field strains (strains 1504, 4070, and 1313) were more closely related than the ecotropic viruses of different strains (strains 1504, 4070, and 4996). These findings suggested that the genetic sequences of the amphotropic viruses are more conserved than those of ecotropic viruses isolated from the same wild mice.  相似文献   

16.
The intracerebral inoculation of Lewis rats with the murine coronavirus MHV-JHM leads in the majority of animals to acute encephalitis and death within 14 days. Viral RNAs isolated from the brains of animals 5 to 7 days after infection were compared by Northern blot analysis with the RNAs produced during the lytic infection of Sac(-) or DBT cells with wild-type MHV-JHM (wt virus). Reproducibly, the subgenomic mRNAs 2 and 3 but no other viral RNAs were significantly larger in the brain-derived material. All viruses isolated from infected brain material displayed and maintained this altered mRNA profile when cultivated in Sac(-) or DBT cells. A virus isolated from the infected brain material, MHV-JHM clone 2 (cl-2 virus), has been further characterized. This isolate grew in tissue culture and induced cytopathic effects comparable to those induced by wt virus. However, the mRNAs 2 and 3 produced in cl-2 virus-infected cells had molecular weights ca. 150,000 larger than those produced in cells infected with wt virus. There was no detectable difference in genome-sized RNA (mRNA 1) or subgenomic mRNAs 4, 5, 6, and 7 as determined by electrophoresis in agarose gels. T1-resistant oligonucleotide analysis of genomic RNA revealed one additional and one missing oligonucleotide in the fingerprint of cl-2 virus compared with wt virus. The oligonucleotide fingerprints of intracellular mRNA 3 were identical for both viruses. Pulse-labeling with [35S]methionine in the presence of tunicamycin showed that the primary translation product of mRNA 3, the E2 apoprotein, was ca. 15,000 larger in molecular weight in cl-2 virus-infected cells. These data show that viruses with larger mRNAs 2 and 3 (the latter encoding an altered E2 glycoprotein) are selected for multiplication in rat brains. Mechanisms for the generation of such variants and the possible nature of their selective advantage are considered.  相似文献   

17.
The genetic complexities of several ribodeoxyviruses were measured by quantitative analysis of unique RNase T1-resistant oligonucleotides from 60-70S viral RNAs. Moloney murine leukemia virus was found to have an RNA complexity of 3.5 x 10(6) daltons, whereas Moloney murine sarcoma virus had a significantly smaller genome size of 2.3 x 10(6). Reticuleondotheliosis and visna virus RNAs had complexities of 3.9 x 10(6), respectively. Analysis of RNase A-resistant oligonucleotides of Rous sarcoma virus RNA gave a complexity of 3.6 x 10(6), similar to that previously obtained with RNase T1-resistant oligonucleotides. Since each of these viruses was found to have a unique sequence genomic complexity near the molecular weight of a single 30-40S viral RNA subunit, it was concluded that ribodeoxyvirus genomes are at least largely polyploid.  相似文献   

18.
Characterization of canine distemper viruses adapted to human neural cells   总被引:2,自引:0,他引:2  
The biochemical characteristics of canine distemper virus (CDV) adapted to three human neural cells (glioblastoma, oligodendroglioma, and neuroblastoma cells) were compared with those of the unadapted original virus. The specific gravity of the virions and nucleocapsids of the original and the three adapted viruses were not different. The molecular weights of genomic RNA and messenger RNAs encoding H, F, P, and NP proteins of the adapted viruses as estimated by Northern blot hybridization were similar to those of the original virus. By T1-resistant oligonucleotide analysis of the genomic RNA, the glioblastoma- and the neuroblastoma-adapted viruses gave two more spots than the original virus; the oligodendroglioma-adapted virus had a pattern identical to that of the original virus. By two-dimensional gel electrophoresis of virion proteins, we found a difference in the isoelectric point of the viral envelope proteins H and F between the original and the adapted viruses. These results suggest that viral genomic changes occurred during adaptation, resulting in the alteration of viral envelope proteins.  相似文献   

19.
Properties and Location of Poly(A) in Rous Sarcoma Virus RNA   总被引:40,自引:26,他引:14       下载免费PDF全文
The poly(A) sequence of 30 to 40S Rous sarcoma virus RNA, prepared by digestion of the RNA with RNase T(1), showed a rather homogenous electrophoretic distribution in formamide-polyacrylamide gels. Its size was estimated to be about 200 AMP residues. The poly(A) appears to be located at or near the 3' end of the 30 to 40S RNA because: (i) it contained one adenosine per 180 AMP residues, and because (ii) incubation of 30 to 40S RNA with bacterial RNase H in the presence of poly(dT) removed its poly(A) without significantly affecting its hydrodynamic or electrophoretic properties in denaturing solvents. The viral 60 to 70S RNA complex was found to consist of 30 to 40S subunits both with (65%) and without (approximately 30%) poly(A). The heteropolymeric sequences of these two species of 30 to 40S subunits have the same RNase T(1)-resistant oligonucleotide composition. Some, perhaps all, RNase T(1)-resistant oligonucleotides of 30 to 40S Rous sarcoma virus RNA appear to have a unique location relative to the poly(A) sequence, because the complexity of poly(A)-tagged fragments of 30 to 40S RNA decreased with decreasing size of the fragment. Two RNase T(1)-resistant oligonucleotides which distinguish sarcoma virus Prague B RNA from that of a transformation-defective deletion mutant of the same virus appear to be associated with an 11S poly(A)-tagged fragment of Prague B RNA. Thus RNA sequences concerned with cell transformation seem to be located within 5 to 10% of the 3' terminus of Prague B RNA.  相似文献   

20.
K Kai  H Ikeda  Y Yuasa  S Suzuki    T Odaka 《Journal of virology》1976,20(2):436-440
Mouse strain G was studied for its susceptibility to various strains of murine leukemia and sarcoma viruses. Both N- and NB-tropic Friend leukemia viruses neither induced splenomegaly nor grew efficiently in strain G mice. Using the XC test, cultured embryo cells were found to be resistant, but not absolutely, to all the tested viruses, N-tropic AKR virus, N- and NB-tropic Friend leukemia viruses, NB-tropic Rauscher leukemia virus, B-tropic WN1802B virus, NB-tropic Moloney leukemia and sarcoma viruses, and N-tropic Kirsten sarcoma virus, although the resistance to Moloney leukemia and sarcoma viruses is sometimes not as strong as that for other viruses. Thus, the strain G mice are unique among mouse strains because they show resistance that is not related to the N-B tropism of murine leukemia viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号