首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Corynebacterium ammoniagenes contains a ribonucleotide reductase (RNR) of the class Ib type. The small subunit (R2F) of the enzyme has been proposed to contain a manganese center instead of the dinuclear iron center, which in other class I RNRs is adjacent to the essential tyrosyl radical. The nrdF gene of C. ammoniagenes, coding for the R2F component, was cloned in an inducible Escherichia coli expression vector and overproduced under three different conditions: in manganese-supplemented medium, in iron-supplemented medium, and in medium without addition of metal ions. A prominent typical tyrosyl radical EPR signal was observed in cells grown in rich medium. Iron-supplemented medium enhanced the amount of tyrosyl radical, whereas cells grown in manganese-supplemented medium had no such radical. In highly purified R2F protein, enzyme activity was found to correlate with tyrosyl radical content, which in turn correlated with iron content. Similar results were obtained for the R2F protein of Salmonella typhimurium class Ib RNR. The UV-visible spectrum of the C. ammoniagenes R2F radical has a sharp 408-nm band. Its EPR signal at g = 2.005 is identical to the signal of S. typhimurium R2F and has a doublet with a splitting of 0.9 millitesla (mT), with additional hyperfine splittings of 0.7 mT. According to X-band EPR at 77-95 K, the inactive manganese form of the C. ammoniagenes R2F has a coupled dinuclear Mn(II) center. Different attempts to chemically oxidize Mn-R2F showed no relation between oxidized manganese and tyrosyl radical formation. Collectively, these results demonstrate that enzymatically active C. ammoniagenes RNR is a generic class Ib enzyme, with a tyrosyl radical and a diferric metal cofactor.  相似文献   

2.
Ribonucleotide reduction, the unique step in the pathway to DNA synthesis, is catalyzed by enzymes via radical-dependent redox chemistry involving an array of diverse metallocofactors. The nucleotide reduction gene (nrdF) encoding the metallocofactor containing small subunit (R2F) of the Corynebacterium ammoniagenes ribonucleotide reductase was reintroduced into strain C. ammoniagenes ATCC 6872. Efficient homologous expression from plasmid pOCA2 using the tac-promotor enabled purification of R2F to homogeneity. The chromatographic protocol provided native R2F with a high ratio of manganese to iron (30:1), high activity (69 μmol 2'-deoxyribonucleotide·mg?1 ·min?1) and distinct absorption at 408 nm, characteristic of a tyrosyl radical (Y˙), which is sensitive to the radical scavenger hydroxyurea. A novel enzyme assay revealed the direct involvement of Y˙ in ribonucleotide reduction because 0.2 nmol 2'-deoxyribonucleotide was formed, driven by 0.4 nmol Y˙ located on R2F. X-band electron paramagnetic resonance spectroscopy demonstrated a tyrosyl radical at an effective g-value of 2.004. Temperature dependent X/Q-band EPR studies revealed that this radical is coupled to a metallocofactor. Similarities of the native C. ammoniagenes ribonucleotide reductase to the in vitro activated Escherichia coli class Ib enzyme containing a dimanganese(III)-tyrosyl metallocofactor are discussed.  相似文献   

3.
Sarcoplasmic phosphorylase phosphatase extracted from ground skeletal muscle was recovered in a high molecular weight from (Mr = 250000). This enzyme has been purified from extracts by anion-exchange and gel chromatography to yield a preparation with three major protein components of Mr 83000, 72000, and 32000 by sodium dodecyl sulfate gel electrophoresis. The phosphorylase phosphatase activity of the complex form was activated more than 10-fold by Mn2+, with a K0.5 of 10(-5) M, but not by Mg2+ or Ca2+. Manganese activation occurred over a period of several minutes and resulted primarily in an increase in Vmax of a phosphatase that was sensitive to trypsin. Activation persisted after gel filtration, and the active form of the enzyme did not contain bound manganese measured by using 54Mn2+. A contaminating p-nitrophenylphosphatase was activated by either Mn2+ (K0.5 of 10(-4) M) or Mg2+ (K0.5 of 10(-3) M). Unlike the protein phosphatase this enzyme was inactive following removal of the metal ions by gel filtration. The phosphatase complex could be dissociated into its component subunits by precipitation with 50% acetone at 20 degrees C in the presence of an inert divalent cation, reducing agent, and bovine serum albumin. Two catalytic subunits were quantitatively recovered; one of Mr 83000 was a trypsin-sensitive manganese-activated phosphatase and the second of Mr 32000 was trypsin-stable and metal ion dependent. Both enzymes were effective in catalyzing the dephosphorylation of either phosphorylase a or the regulatory subunit of adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase, but neither subunit possessed p-nitrophenylphosphatase activity.  相似文献   

4.
The manganese-containing ribonucleotide reductase previously identified in gram-positive bacteria has been purified and its nucleotide specificity and other requirements were determined. The enzyme isolated from Brevibacterium ammoniagenes is a ribonucleoside-diphosphate reductase which, in the presence of allosteric effectors, reduces all four common substrates at comparable rates; very little activity is observed in the absence of effector nucleotides. Ribonucleoside triphosphates are reduced at 20% the rate of the diphosphates. Cytidine and uridine nucleotide reduction is specifically stimulated by ATP and dATP, adenylate reduction by dGTP, and guanosine nucleotide reduction by dTTP. Unlike the iron-containing ribonucleotide reductase systems, high concentrations of dATP do not inhibit substrate reduction. The new bacterial enzyme tolerates high salt concentrations (up to 250 mM ionic strength) and does not require divalent metal ions for activity in vitro. The presence of thioredoxin has been demonstrated in heat- and acid-treated protein extracts of B. ammoniagenes and the protein was purified to homogeneity. It is very similar to the thioredoxins isolated from other organisms in relative molecular mass (12,000), isoelectric point (4.3) and enzyme-activating properties. In the presence of 0.3 mM dithiothreitol, the bacterial thioredoxin can serve as hydrogen donor for B. ammoniagenes ribonucleotide reductase in vitro, indicating the presence of a functional ribonucleotide reductase-thioredoxin system in these bacteria. The properties described in this and in our preceding paper in this journal [Eur. J. Biochem. 170, 603-611 (1988)] suggest that the B. ammoniagenes ribonucleotide reductase is intermediate in structure and specificity between the deoxyadenosylcobalamin-dependent and the iron-containing enzyme classes and that it is adapted to the specific requirements of deoxyribonucleotide synthesis in this organism.  相似文献   

5.
Ribonucleotide reductase (RNR) is the enzyme performing de novo production of the four deoxyribonucleotides needed for DNA synthesis. All mammals as well as some prokaryotes express the class I enzyme which is an alpha(2)beta(2) protein. The smaller of the homodimers, denoted R2, contains a di-iron carboxylate site which, upon reaction with molecular oxygen, generates a stable tyrosyl radical needed for catalysis. The three-dimensional structure of the oxidized class Ib RNR R2 from Corynebacterium ammoniagenes has been determined at 1.85 A resolution and refined to an R-value of 15.8% (R(free) = 21.3%). In addition, structures of both the reduced iron-containing, and manganese-substituted protein have been solved. The C. ammoniagenes R2 has been proposed to be manganese-dependent. The present structure provides evidence that manganese is not oxidized by the protein, in agreement with recent biochemical data, and that no obvious structural abnormalities are seen in the oxidized and reduced iron-containing forms, giving further support that the protein is indeed an iron-dependent RNR R2. The di-manganese structure also provides an explanation for the magnetic properties of this site. The structure of the oxidized C. ammoniagenes R2 also reveals an additional water molecule bridging the radical and the iron site, which has not previously been seen in any other R2 structure and which might have important mechanistic implications.  相似文献   

6.
The catalytic properties of DNA gyrase, an A 2B 2 complex, are modulated by the presence of divalent metal ions. Using circular dichroism, protein melting experiments and enzyme activity assays, we investigated the correlation between the A 2B 2 conformation, the nature of the metal ion cofactor and the enzyme activity in the presence and absence of DNA substrate. At room temperature, DNA gyrase structure is not appreciably affected by Ca (2+) or Mg (2+) but is modified by Mn (2+). In addition, metal ions strongly affect the enzyme's thermal transitions, rendering the A 2B 2 structure more flexible. Using the B subunit, we were able to identify two distinct complexes with manganese ions. The first one exhibits a 1:1 stoichiometry and is not affected by the presence of DNA. The second complex is associated with a large protein structural modification that can be remarkably modulated by addition of the DNA substrate. This behavior is conserved in the reconstituted protein. Studies with two GyrB mutants indicate that Mn (2+) interference with the TOPRIM region modulates gyrase supercoiling activity. In particular, considering the need for two divalent metal ions for an efficient catalytic cleavage of the phosphodiester bond, our data suggest that residue D500 participates in the first complexation event (DNA-independent), whereas residue D498 is involved mainly in the second process. In conclusion, a combination of the ion features (ionic size, electronegativity, coordination sphere) operating at the level of the catalytic region and of the ion-driven modifications in overall enzyme structure and flexibility contribute to the mechanism of gyrase activity. An effectual role for DNA recruiting the second catalytic metal ion is envisaged.  相似文献   

7.
Manganese transport in Brevibacterium ammoniagenes ATCC 6872.   总被引:1,自引:0,他引:1       下载免费PDF全文
Uptake of manganese by Brevibacterium ammoniagenes ATCC 6872 was energy dependent and obeyed saturation kinetics (Km = 0.65 microM; Vmax = 0.12 mumol/min per g [dry weight]). Uptake showed optima at 27 degrees C and pH 9.5. 54Mn2+ accumulated by the cells was released by treatment with toluene or by exchange for unlabeled manganese ions, via an energy-dependent process. Co2+, Fe2+, Cd2+, and Zn2+ inhibited manganese uptake. Inhibition by Cd2+ and Zn2+ was competitive (Ki = 0.15 microM Cd2+ and 1.2 microM Zn2+). Experiments with 65Zn2+ provided no evidence for Zn2+ uptake via the Mn2+ transport system.  相似文献   

8.
The hepatitis C virus nonstructural 5B protein (NS5B) protein has been shown to require either magnesium or manganese for its RNA-dependent RNA polymerase activity. As a first step toward elucidating the nature and the role(s) of the metal ions in the reaction chemistry, we have utilized endogenous tryptophan fluorescence to quantitate the interactions of magnesium and manganese ions with this protein. The association of either Mg(2+) or Mn(2+) ions with the enzyme resulted in a decrease in the intensity of the tryptophan emission spectrum. This decrease was used to determine the apparent dissociation constants for both ions. The apparent K(d) values for the binding of Mg(2+) and Mn(2+) ions to the free enzyme were 3.1 and 0.3 mm, respectively. Dual ligand titration experiments demonstrated that both ions bind to a single common site, for which they compete. The kinetics of real time metal ion binding to the NS5B protein were also investigated. Based on the results of our fluorescence and near-UV circular dichroism experiments, we show that NS5B undergoes conformational changes upon the binding of metal ions. However, this process does not significantly stimulate the binding to the RNA or NTP substrates. We envisage that the ion-induced conformational change is a prerequisite for catalytic activity by both correctly positioning the side chains of the residues located in the active site of the enzyme and also contributing to the stabilization of the intermediate transition state.  相似文献   

9.
The complexes of DNA - HMGB1 protein - manganese ions have been studied using circular dichroism (CD) technique. It was shown that in such three-component system the interactions of both the protein and metal ions with DNA differ from those in two-component complexes. The manganese ions do not affect the CD spectrum of free HMGB1 protein. However, Mn2+ ions induce considerable changes in the CD spectrum of free DNA in the spectral range of 260-290 nm. The presence of Mn2+ ions prevents formation of the ordered supramolecular structures specific for the HMGB1-DNA complexes. The interaction of manganese ions with DNA has a marked influence on the local DNA structure changing the properties of protein-binding sites. This results in the serious decrease in cooperativity of the DNA-protein binding. Such changes in the mode of the DNA-protein interactions occur at concentrations as small as 0.01 mM Mn2+. Moreover, the changes in local DNA structure induced by manganese ions promote the appearance of new HMGB1 binding sites on the DNA double helix. At the same time interactions with HMGB1 protein induce alterations in the structure of the DNA double helix which increase with a growth of the protein/DNA ratio. These alterations make the DNA/protein complex especially sensitive to manganese ions. Under these conditions the Mn2+ ions strongly affect the DNA structure that reflects in abrupt changes of the CD spectra of DNA in the complex in the range of 260-290 nm. Thus, structural changes of the DNA double helix in the three-component DNA-HMGB1-Mn2+ complexes come as a result of the combined and interdependent interactions of DNA with Mn2+ ions and the molecules of HMGB1.  相似文献   

10.
Ribonucleotide reductase (class I) contains two components: protein R1 binds the substrate, and protein R2 normally has a diferric site and a tyrosyl free radical needed for catalysis. In Chlamydia trachomatis RNR, protein R2 functions without radical. Enzyme activity studies show that in addition to a diiron cluster, a mixed manganese-iron cluster provides the oxidation equivalent needed to initiate catalysis. An EPR signal was observed from an antiferromagnetically coupled high-spin Mn(III)-Fe(III) cluster in a catalytic reaction mixture with added inhibitor hydroxyurea. The manganese-iron cluster in protein R2 confers much higher specific activity than the diiron cluster does to the enzyme.  相似文献   

11.
Four phosphoprotein phosphatases, with the ability to act upon hydroxymethylglutaryl (HMG)-CoA reductase, phosphorylase, and glycogen synthase have been purified from rat liver cytosol through a process that involves DEAE-cellulose, aminohexyl-Sepharose-4B, and Bio-Gel A 1.5 m chromatographies. Protein phosphatase II (Mr 180,000) was the major enzyme (68%) with a very broad substrate specificity, showing similar activity toward the three substrates. Phosphatases I1 (Mr 180,000) and I3 (Mr 250,000) accounted for only 12 and 15% of the total activity, respectively, and they were also able to dephosphorylate the three substrates. In contrast, phosphatase I2 (Mr 200,000) showed only phosphorylase phosphatase activity with insignificant dephosphorylating capacity toward HMG-CoA reductase and glycogen synthase. Upon ethanol treatment at room temperature, the Mr of all phosphatases changed; protein phosphatases I2, I3, and II were brought to an Mr of 35,000, while phosphatase I1 was reduced to an Mr of 69,000. Glycogen synthase phosphatase activity was decreased in all four phosphatases. There was also a decrease in phosphatase I1 activity toward HMG-CoA reductase and phosphorylase as substrates. The HMG-CoA reductase phosphatase and phosphorylase phosphatase activities of phosphatases I2, I3, and II were increased after ethanol treatment. Each protein phosphatase showed a different optimum pH, which changed depending on the substrate. The four phosphatases increased their activity in the presence of Mn2+ and Mg2+. In general, Mn2+ was a better activator than Mg2+, and phosphatase I1 showed a stronger dependency on these cations than any other phosphatase. Phosphorylase was a competitive substrate in the HMG-CoA reductase phosphatase and glycogen synthase phosphatase reactions of protein phosphatases I1, I3, and II. HMG-CoA reductase was also able to compete with phosphorylase and glycogen synthase for phosphatase activity. Glycogen synthase phosphatase activity presented less inhibition in the low-Mr forms. A comparison has been made with other protein phosphatases previously reported in the literature.  相似文献   

12.
Thiosulfate reductase of the dissimilatory sulfate-reducing bacterium Desulfovibrio gigas has been purified 415-fold and its properties investigated. The enzyme was unstable during the different steps of purification as well as during storage at - 15 degrees C. The molecular weight of thiosulfate reductase estimated from the chromatographic behaviour of the enzyme on Sephadex G-200 was close to 220000. The absorption spectrum of the purified enzyme exhibited a protein peak at 278 nm without characteristic features in the visible region. Thiosulfate reductase catalyzed the stoichiometric production of hydrogen sulfide and sulfite from thiosulfate, and exhibited tetrathionate reductase activity. It did not show sulfite reductase activity. The optimum pH of thiosulfate reduction occurred between pH 7.4 and 8.0 and its Km value for thiosulfate was calculated to be 5 - 10(-4)M. The sensitivity of thiosulfate reductase to sulfhydryl reagent and the reversal of the inhibition by cysteine indicated that one or more sulfhydryl groups were involved in the catalytic activity. The study of electron transport between hydrogenase and thiosulfate reductase showed that the most efficient coupling was obtained with a system containing cytochromes c3 (Mr = 13000) and c3 (Mr = 26000).  相似文献   

13.
A soluble form of an alkaline phosphatase obtained from rat osseous plates was purified 204-fold with a yield of 24.3%. The purified enzyme showed a single protein band of Mr 80,000 on SDS-PAGE and an apparent molecular weight of 163,000 by gel filtration on Sephacryl S-300 suggesting a dimeric structure for the soluble enzyme. The specific activity of the enzyme at pH 9.4 in the presence of 2 mM MgCl2 was 19,027 U/mg and the hydrolysis of p-nitrophenyl phosphate (K0.5 = 92 microM) showed positive cooperativity (n = 1.5). The purified enzyme showed a broad substrate specificity, however, ATP, bis(p-nitrophenyl) phosphate and pyrophosphate were among the less hydrolyzed substrates assayed. Surprisingly the enzyme was not stimulated by cobalt and manganese ions, in contrast with a 20-25% stimulation observed for magnesium and calcium ions. Zinc ions exerted a strong inhibition on p-nitrophenylphosphatase activity of the enzyme. This paper provides a simple experimental procedure for the isolation of a soluble form of alkaline phosphatase which is induced by demineralized bone matrix during endochondral ossification.  相似文献   

14.
Bacillus anthracis is a severe mammalian pathogen encoding a class Ib ribonucleotide reductase (RNR). RNR is a universal enzyme that provides the four essential deoxyribonucleotides needed for DNA replication and repair. Almost all Bacillus spp. encode both class Ib and class III RNR operons, but the B. anthracis class III operon was reported to encode a pseudogene, and conceivably class Ib RNR is necessary for spore germination and proliferation of B. anthracis upon infection. The class Ib RNR operon in B. anthracis encodes genes for the catalytic NrdE protein, the tyrosyl radical metalloprotein NrdF, and the flavodoxin protein NrdI. The tyrosyl radical in NrdF is stabilized by an adjacent Mn(2)(III) site (Mn-NrdF) formed by the action of the NrdI protein or by a Fe(2)(III) site (Fe-NrdF) formed spontaneously from Fe(2+) and O(2). In this study, we show that the properties of B. anthracis Mn-NrdF and Fe-NrdF are in general similar for interaction with NrdE and NrdI. Intriguingly, the enzyme activity of Mn-NrdF was approximately an order of magnitude higher than that of Fe-NrdF in the presence of the class Ib-specific physiological reductant NrdH, strongly suggesting that the Mn-NrdF form is important in the life cycle of B. anthracis. Whether the Fe-NrdF form only exists in vitro or whether the NrdF protein in B. anthracis is a true cambialistic enzyme that can work with either manganese or iron remains to be established.  相似文献   

15.
巨大芽孢杆菌产胞外青霉素酰化酶发酵液经硫酸铵分级抽提及SephadexG-100、羟基磷灰石、DEAE纤维素DE52等层析步骤,提纯了青霉素酰化酶,得到电泳均一的酶制剂。纯酶比活力约为25U/mg蛋白,纯化49倍,活力回收58%,经PAGE及SDS-PAGE测知该酶不含亚基,其分子量约为140kD。该酶最适pH为9.0,最适温度47℃,用底物NIPAB测活,其Km值为6.2×10~(-4)mol/L,Vm值为1.24×104mol/L。此外还探讨了部分金属离子对该酶的影响。  相似文献   

16.
The DNA strand breaks resulting from exposure to the free radicals generated by ionizing radiation or oxidizing agents are refractory to DNA repair synthesis because of deoxyribose fragments that block their 3' termini. The restoration of normal 3'-OH nucleotide primers is the essential first step in the excision repair of these radical-induced strand breaks. We have used a synthetic DNA substrate containing 3'-phosphoglycolaldehyde esters to identify and purify to physical homogeneity the major yeast diesterase that removes such nucleotide fragments. Yeast 3'-phosphoglycolaldehyde diesterase had Mr = 40,500 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A similar molecular weight estimate from gel filtration indicated that the active species is a nearly globular monomer. Purification of the enzyme removed a tightly bound metal, but the activity of the purified enzyme could be restored by the addition of Co2+, Mn2+, Ni2+, or Zn2+, with Co2+ the most effective cofactor. Even 3 microM Co2+ stimulated near-maximal activity, and this metal also conferred significant thermal stability on the purified protein. This is a novel enzyme, whose N-terminal amino acid sequence does not show any significant similarity to published sequences, and which is not the product of any gene in the RAD52 epistasis group.  相似文献   

17.
Ribonucleotide reductases provide the building blocks for DNA synthesis. Three classes of enzymes are known, differing widely in amino acid sequence but with similar structural motives and allosteric regulation. Class I occurs in eukaryotes and aerobic prokaryotes, class II occurs in aerobic and anaerobic prokaryotes, and class III occurs in anaerobic prokaryotes. The eukaryote Euglena gracilis contains a class II enzyme (Gleason, F. K., and Hogenkamp, H. P. (1970) J. Biol. Chem. 245, 4894-4899) and, thus, forms an exception. Class II enzymes depend on vitamin B(12) for their activity. We purified the reductase from Euglena cells, determined partial peptide sequences, identified its cDNA, and purified the recombinant enzyme. Its amino acid sequence and general properties, including its allosteric behavior, were similar to the class II reductase from Lactobacillus leichmannii. Both enzymes belong to a distinct small group of reductases that unlike all other homodimeric reductases are monomeric. They compensate the loss of the second polypeptide of dimeric enzymes by a large insertion in the monomeric chain. Data base searching and sequence comparison revealed a homolog from the eukaryote Dictyostelium discoideum as the closest relative to the Euglena reductase, suggesting that the class II enzyme was present in a common, B(12)-dependent, eukaryote ancestor.  相似文献   

18.
The fatty acid synthase (FAS) from Brevibacterium ammoniagenes is a homohexameric multienzyme complex that catalyzes the synthesis of both saturated and unsaturated fatty acids. By immunological screening of a B. ammoniagenes expression library, an fas DNA fragment was isolated and subsequently used to clone the entire gene together with its flanking sequences. Within 10,525 bp of sequenced DNA, the 9,189-bp FAS coding region was identified, corresponding to a protein of 3,063 amino acids with a molecular mass of 324,910 Da. This gene (fasA) encodes, at its 5' end, the same amino acid sequence as is observed with purified B. ammoniagenes FAS. A second reading frame encoding another B. ammoniagenes FAS variant (FasB) had been identified previously. Both sequences are colinear and exhibit 61 and 47% identity at the DNA and protein levels, respectively. By using specific antibodies raised against a unique peptide sequence of FasB, this enzyme was shown to represent only 5 to 10% of the cellular FAS protein. Insertional inactivation of the FasB coding sequence causes no defective phenotype, while fasA disruptants require oleic acid for growth. Correspondingly, oleate-dependent B. ammoniagenes cells obtained by ethyl methanesulfonate mutagenesis were complemented by transformation with fasA DNA but not with fasB DNA. The data indicate that B. ammoniagenes contains two related though differently expressed type I FASs. FasA represents the bulk of cellular FAS protein and catalyzes the synthesis of both saturated and unsaturated fatty acids, while the minor variant, FasB, cannot catalyze the synthesis of oleic acid.  相似文献   

19.
A method of isolation of three different, partially purified deoxyribonucleases from the cells of Brevibacterium ammoniagenes is descrirbed. The enzyme preparations were activated by various bivalent metal ions: 50mM MgCl2 (I), 5 mM CaCl2+5 mM MgCl2 (II), 10 mM CaCl2 (III), and had different pH optima -- 8.8 (I), 7.2 (II) and 8.2 (III). In the isolated nuclei of rat brain the first and third fractions split chromatin at the internucleosomal sites with a formation of nucleosomes -- structural subunits of chromatin. The second fraction exhibited no structural specificity for chromatin. A possible use of the enzymes for the analysis of chromatin structure is discussed.  相似文献   

20.
Nitrous oxide reductase from Wolinella succinogenes was purified very nearly to homogeneity. The enzyme was found to be dimeric, with Mr = 162,000 and subunit Mr = 88,000, and to contain three copper atoms and one iron atom (as cytochrome c) per subunit. The oxidized enzyme exhibited absorption bands at 410 and 528 nm, and the dithionite-reduced enzyme, at 416, 520, and 550 nm. The isoelectric point was 8.6; specific activity was at 25 degrees C and pH 7.1, 160 mumol x min-1 x mg-1; and Km was 7.5 microM N2O under the same conditions. alpha-Chymotrypsin cleaved the enzyme into cytochrome c-depleted dimers with an average Mr = 134,000 and cytochrome c-enriched fragments with an average Mr = 13,000. The enzyme was stable at 4 degrees C for at least 100 h under air and 3 h in the presence of 5 mM EDTA. It exhibited a dithionite-N2O oxidoreductase as well as a BV+-N2O oxidoreductase activity. During turnover with BV+ at 25 mM N2O, the enzyme was observed to undergo an initial activation and a subsequent inactivation. The kinetics of inactivation were approximately first-order in remaining activity, and the first-order rate constant was essentially independent of the initial enzyme concentration. These characteristics are consistent with the occurrence of turnover-dependent inactivation. Acetylene was a relatively weak inhibitor, but cyanide and azide were rather strong inhibitors. The nitrous oxide reductase of W. succinogenes is quite different from that of denitrifying bacteria. The amount of activity in cell extracts and the absence of O2-labile nitrous oxide reductase suggested that the cytochrome c containing enzyme may be the only one produced by W. succinogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号