首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A characteristic DNA rearrangement, the loss of an EcoRI cleavage site next to the 3'-end of the human c-mos gene, has been found to be frequently present in DNA from transformed hematopoietic cells of the myeloid lineage but not in DNA from either normal or transformed cells of different tissue types. Three established cell lines, respectively a pro-monocytic line (CM-S) and two precursor granulocytic lines (My/K1 and My/K5), carry the same genome rearrangement, but not fibroblasts obtained from the marrow of the same patients. This DNA rearrangement is maintained in three different hybridomas derived by fusion of CM-S cells with normal human embryo hepatocytes.  相似文献   

2.
3.
Recombinant DNA techniques to detect the rearrangement of genes encoding immunoglobulins and T-cell-antigen receptors have been used to identify clonality in lymphoid lesions. To determine the utility of such techniques in cytologic specimens, DNA was analyzed in 24 effusions and 6 fine needle aspirates. Immunophenotypic studies were also performed on the 19 specimens with suspected hematopoietic malignancies. Sufficient material for DNA analysis was present in 28 of the 30 specimens. Immunoglobulin or T-cell-receptor gene rearrangement was present in 13 specimens with atypical cytologic findings; DNA studies provided more information than did the immunologic studies in 3 cases. One T-cell malignancy showed T-cell receptor and heavy-chain gene rearrangement, and one B-cell malignancy showed immunoglobulin and T-cell receptor gene rearrangement. In all patients except one with no evidence of gene rearrangement, the morphologic and immunologic studies also favored a reactive process. Control specimens showed a germline configuration. This study demonstrated that DNA gene rearrangement studies are feasible on many cytologic specimens and may be useful in diagnostically difficult cases.  相似文献   

4.
Ad2+ND4del is an adenovirus type 2-simian virus 40 hybrid virus nondefective for growth in human cells. The virus was first observed when stocks of Ad2+ND4, a hybrid isolated from primary monkey kidney cells, were propagated in human cells. This paper describes the DNA sequence at two sites of DNA recombination, the site of the left adenovirus type 2-simian virus 40 junction and the site of a deletion of internal simian virus 40 sequences. Since the deletion was observed when the virus was switched from monkey to human cells, an analysis of gene expression in the region of DNA rearrangement may prove useful for the elucidation of molecular events that accompany virus growth in different hosts.  相似文献   

5.
T Kunieda  M Matsui  N Nomura  R Ishizaki 《Gene》1991,107(2):323-328
By transfecting a high-Mr DNA from human stomach cancer into NIH3T3 cells, a transforming sequence that showed homology with the human ret gene was identified. The transforming sequence was found to be generated by a DNA rearrangement in the human ret proto-oncogene. This rearrangement was suggested to have occurred during the transfection procedure. The nucleotide sequences of cDNAs of the rearranged ret gene and deduced amino acid (aa) sequences revealed that the rearrangement had resulted in recombination of the 3' segment of the ret proto-oncogene with a segment of an unknown human sequence, and that the recombination had generated a novel gene encoding a fusion protein of 435 aa. The rearrangement was presumed to be responsible for activation of the ret gene.  相似文献   

6.
The kappa immunoglobulin (Ig) genes from rat kidney and from rat myeloma cells were cloned and analyzed. In kidney DNA one C kappa species is observed by Southern blotting and cloning in phage vectors; this gene most likely represents the embryonic configuration. In the IR52 myeloma DNA two C kappa species are observed: one in the same configuration seen in kidney and one which has undergone a rearrangement. This somatic rearrangement has brought the expressed V region to within 2.7 kb 5' of the C kappa coding region; the rearrangement site is within the J kappa cluster which we have mapped. The rat somatic Ig rearrangement, therefore, closely resembles that seen in mouse Ig genes. In the rat embryonic fragment two J kappa segments were mapped at 2 and 4.3 kb 5' from the C kappa coding region. Therefore, the rat J kappa cluster extends over about 2.3 kb, a region much longer than the 1.4 kb of the mouse and human J kappa clusters. In the region between C kappa and the expressed J kappa of IR52 myeloma DNA, and XbaI site present in the embryonic kappa gene has been lost. A somatic mutation has therefore occurred in the intervening sequence DNA approx. 0.7 kb 3' from the V/J recombination site. Southern blots of rat kidney DNA hybridized with different rat V kappa probes showed non-overlapping sets of bands which correspond to different subgroups, each composed of 8-10 closely related V kappa genes.  相似文献   

7.
The V(D)J recombinase, a complex of RAG1 and RAG2, carries out a gene rearrangement process that is required for the achievement of diverse antigen receptor repertoires during the early developmental stage of lymphocytes. It recognizes a specific site spanning the coding DNA region of antigen receptor genes and produces double-stranded DNA breaks at the board between coding and signal sequences. Two broken DNA ends are joined by a double-stranded break repair system. Both RAG (recombination activation gene) 1 and RAG2 proteins are absolutely required for this process although the catalytic residues of V(D)J recombinase are exclusively located at RAG1 according to recent mutational analyses. In this study we identified some acidic amino acid residues in RAG1 responsible for the interaction with RAG2. Mutation on these residues caused a decrease of cleavage activity in vitro and failure of RAG-RSS DNA synaptic complex formation. This result is complementary to previous reports in which positively charged amino acids in RAG2 play an important role in RAG1 binding.  相似文献   

8.
In a previous paper (Proc. Natl. Acad. Sci. USA 84: 4264, 1987) we reported an unusual DNA rearrangement in T-cell receptor beta chain gene loci in cells from a patient with human T-cell leukemia. A D beta 1-J beta 2.3 junction was found on one chromosome, while the other chromosome kept the germline configuration. Although the DNA fragment located between the D beta 1 and J beta 2.3 loci should have disappeared from the cells, it was found on chromosome 6 as an inserted segment. We have now determined the nucleotide sequences bordering both sides of the inserted segment. The signal sequence for D beta-J beta rearrangement at the 5' side of J beta 1.2 gene seems to have been used for the insertion. The 3' end of the inserted segment corresponded to the edge of the signal heptamer at the 5' side of J beta 2.3 which was used for the initial D beta 1-J beta 2.3 joining. This indicates that, during D beta-J beta rearrangement, the intervening sequence was excised as a linear molecule.  相似文献   

9.
基因重排分析在淋巴瘤诊断中具有重要意义.文章应用改良DNA提取方法,从30例淋巴增生性病变石蜡包埋组织获得的DNA虽有不同程度的降解,但适于PCR扩增Ig重链基因重排分析;约1/3病例提出高分子量DNA,可用于DNA印迹杂交.因此,石蜡包埋组织同样可为某些疾患,如淋巴瘤疑难和罕见病例的回顾性分子病理学研究提供基因诊断的DNA来源.  相似文献   

10.
Rearrangement of Ag receptor genes requires recognition by the lymphocyte recombinase of heptamer-nonamer signal sequences followed by two endonucleolytic cleavages and two DNA ligations to form the coding and signal joints. The phenomenon of trans-rearrangement, in which Ag receptor gene segments located on different chromosomes recombine to yield chimeric products, provides an in vivo system in which to investigate the ability of the recombinase to carry out each of these functions in trans. Trans-rearrangements between TCRG and TCRD loci, similar in structure and frequency to those observed previously in human lymphoid tissues, were demonstrated in normal mouse thymus by PCR with crossed V gamma/J delta and V delta/J gamma primer pairs. A simple mechanistic model for trans-rearrangement was then tested. This model posits an ability of the recombinase to catalyze the formation of both coding and signal joints in trans and therefore predicts that trans-rearrangements will generate chimeric signal joints. In adult thymus, chimeric D delta 2-J gamma 1 and D delta 2-J gamma 2 signal joints, containing fused heptamer-nonamer sequences, could be detected by PCR and were each present at frequencies sufficient to account for a large proportion of the corresponding TCRG/TCRD trans-rearrangements. In agreement with the predictions of the model, chimeric signal joints were found as both linear chromosomal and circular episomal DNA. The results provide a framework for understanding the formation of chromosomal translocations in normal and neoplastic lymphoid cells and support the possibility of a looping mechanism for standard gene rearrangement. To test the form of regulation of TCRG rearrangement, the frequencies of specific signal joints from standard and trans-rearrangements were compared. Although J gamma 1 and J gamma 2 segments participated with equal frequency in trans-rearrangement with D delta 2, only the J gamma 1 segment participated in standard rearrangement with V gamma 5. The results suggest that V-J recombination in the TCRG locus is regulated directly at the DNA level by cis-acting constraints which do not affect the accessibility of individual TCRG gene segments to recombination in trans.  相似文献   

11.
Enhancer elements potentiate the rearrangement of antigen receptor loci via changes in the accessibility of gene segment clusters to V(D)J recombinase. Here, we show that enhancer activity per se is insufficient to target T-cell receptor beta miniloci for DbetaJbeta recombination. Instead, a promoter situated 5' to Dbeta1 (PDbeta) was required for efficient rearrangement of chromosomal substrates. A critical function for promoters in regulating gene segment accessibility was further supported by the ability of heterologous promoters to direct rearrangement of enhancer-containing substrates. Importantly, activation of a synthetic tetracycline-inducible promoter (Ptet) positioned upstream from the Dbeta gene segment was sufficient to target recombination of miniloci lacking a distal enhancer element. The latter result suggests that DNA loops, generated by interactions between flanking promoter and enhancer elements, are not required for efficient recognition of chromosomal gene segments by V(D)J recombinase. Unexpectedly, the Ptet substrate exhibited normal levels of rearrangement despite its retention of a hypermethylated DNA status within the DbetaJbeta cluster. Together, our findings support a model in which promoter activation, rather than intrinsic properties of enhancers, is the primary determinant for regulating recombinational accessibility within antigen receptor loci.  相似文献   

12.
13.
The crucial role of the human platelet fibrinogen receptor in maintaining normal hemostasis is best exemplified by the autosomal recessive bleeding disorder Glanzmann thrombasthenia (GT). The platelet fibrinogen receptor is a heterodimer composed of glycoproteins IIb (GPIIb) and IIIa (GPIIIa). Platelets from patients with GT have a quantitative or qualitative abnormality in GPIIb and GPIIIa and can neither bind fibrinogen nor aggregate. Very few genetic defects have been identified that cause this disorder. We describe a kindred with GT in which the affected individuals have a unique inversion-deletion mutation in the gene for GPIIIa. Patient platelets lacked both GPIIIa protein and mRNA. Southern blots of patient genomic DNA probed with an internal 1.0-kb GPIIIa cDNA suggested a large rearrangement of this gene but were normal when probed with small GPIIIa cDNA fragments that were outside the mutation. Cytogenetics and pulsed-field gel analysis of the GPIIIa gene were normal, making a translocation or a very large rearrangement unlikely. Additional Southern analyses suggested that the abnormality was not a small insertion. We constructed a patient genomic DNA library and isolated fragments containing the 5' and 3' breakpoints of the mutation. The nucleotide sequence from these genomic clones was determined and revealed that, relative to the normal gene, the mutant allele contained a 1-kb deletion immediately preceding a 15-kb inversion. The DNA breaks occurred in two inverted and one forward Alu sequence within the gene for GPIIIa and in the left, right, and left arms, respectively, of these sequences. There was a 5-bp repeat at the 3' terminus of the inversion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Despite the various processing steps involved in V(D)J recombination, which could potentially introduce many biases in the length distribution of complementarity determining region 3 (CDR3) segments, the observed CDR3 length distributions for complete repertoires are very close to a normal-like distribution. This raises the question of whether this distribution is simply a result of the random steps included in the process of gene rearrangement, or has been optimized during evolution. We have addressed this issue by constructing a simulation of gene rearrangement, which takes into account the DNA modification steps included in the process, namely hairpin opening, nucleotide additions, and nucleotide deletions. We found that the near-Gaussian- shape of CDR3 length distribution can only be obtained under a relatively narrow set of parameter values, and thus our model suggests that specific biases govern the rearrangement process. In both B-cell receptor (BCR) heavy chain and T-cell receptor beta chain, we obtained a Gaussian distribution using identical parameters, despite the difference in the number and the lengths of the D segments. Hence our results suggest that these parameters most likely reflect the optimal conditions under which the rearrangement process occurs. We have subsequently used the insights gained in this study to estimate the probability of occurrence of two exactly identical BCRs over the course of a human lifetime. Whereas identical rearrangements of the heavy chain are highly unlikely to occur within one human lifetime, for the light chain we found that this probability is not negligible, and hence the light chain CDR3 alone cannot serve as an indicator of B-cell clonality.  相似文献   

15.
A431 cells have an amplification of the epidermal growth factor (EGF) receptor gene, the cellular homolog of the v-erb B oncogene, and overproduce an aberrant 2.9-kilobase RNA that encodes a portion of the EGF receptor. A cDNA (pE15) for the aberrant RNA was cloned, sequenced, and used to analyze genomic DNA blots from A431 and normal cells. These data indicate that the aberrant RNA is created by a gene rearrangement within chromosome 7, resulting in a fusion of the 5' portion of the EGF receptor gene to an unidentified region of genomic DNA. The unidentified sequences are amplified to about the same degree (20- to 30-fold) as the EGF receptor sequences. In situ hybridization to chromosomes from normal cells and A431 cells show that both the EGF receptor gene and the unidentified DNA are localized to the p14-p12 region of chromosome 7. By using cDNA fragments to probe DNA blots from mouse-A431 somatic cell hybrids, the rearranged receptor gene was shown to be associated with translocation chromosome M4.  相似文献   

16.
17.
RAG1/2 (RAG) is an RNH-type DNA recombinase specially evolved to initiate V(D)J gene rearrangement for generating the adaptive immune response in jawed vertebrates. After decades of frustration with little mechanistic understanding of RAG, the crystal structure of mouse RAG recombinase opened the flood gates in early 2015. Structures of three different chordate RAG recombinases, including protoRAG, and the evolutionarily preceding transib transposase have been determined in complex with various DNA substrates. Biochemical studies along with the abundant structural data have shed light on how RAG has evolved from an ordinary transposase to a specialized recombinase in initiating gene rearrangement. RAG has also become one of the best characterized RNH-type recombinases, illustrating how a single active site can cleave the two antiparallel DNA strands of a double helix.  相似文献   

18.
19.
A family with Huntington disease and reciprocal translocation 4;5.   总被引:2,自引:1,他引:1       下载免费PDF全文
We report the clinical and cytogenetic findings in a family in which a balanced reciprocal translocation between the long arm of chromosome 4 and the short arm of chromosome 5 is segregating together with Huntington disease in 2 generations. In situ hybridization studies revealed that the linked human DNA marker is located on the short arm of the normal and translocated chromosome 4 in the region 4p16. The association between Huntington disease and the translocation in this family may represent a chance occurrence. However, it is also possible that there is an undetected rearrangement of DNA on chromosome 4 involving the gene for Huntington disease but not affecting the site of the linked marker. Finally, the likelihood that this represents heterogeneity cannot be excluded.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号