首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Sodium and potassium intakes were increased in normotensive volunteers to assess the effects on their blood pressures. An approximately threefold increase in sodium intake for eight days had no effect on the blood pressures of seven volunteers, while a two-stage increase in potassium intake, by about 40% for eight days and a further 55% for 14 days, had no effect on the blood pressures of 21 volunteers. Renal electrolyte excretions and the blood pressures of all 28 subjects showed no statistically significant correlations between either sodium or potassium excretion and blood pressure. A weak negative correlation was found between the sodium: potassium ratio and systolic pressure. The small reductions in sodium intake and increases in potassium intake that might be achieved through propaganda and changes in food processing are unlikely to lower mean blood pressure in Western societies.  相似文献   

8.
9.
Unlike sodium, potassium is vasoactive; for example, when infused into the arterial supply of a vascular bed, blood flow increases. The vasodilation results from hyperpolarization of the vascular smooth muscle cell subsequent to potassium stimulation by the ion of the electrogenic Na+-K+ pump and/or activating the inwardly rectifying Kir channels. In the case of skeletal muscle and brain, the increased flow sustains the augmented metabolic needs of the tissues. Potassium ions are also released by the endothelial cells in response to neurohumoral mediators and physical forces (such as shear stress) and contribute to the endothelium-dependent relaxations, being a component of endothelium-derived hyperpolarization factor-mediated responses. Dietary supplementation of potassium can lower blood pressure in normal and some hypertensive patients. Again, in contrast to NaCl restriction, the response to potassium supplementation is slow to appear, taking approximately 4 wk. Such supplementation reduces the need for antihypertensive medication. "Salt-sensitive" hypertension responds particularly well, perhaps, in part, because supplementation with potassium increases the urinary excretion of sodium chloride. Potassium supplementation may even reduce organ system complications (e.g., stroke).  相似文献   

10.
11.
OBJECTIVE--To assess the association between sodium and potassium intake and the rise in blood pressure in childhood. DESIGN--Longitudinal study of a cohort of children with annual measurements during an average follow up period of seven years. SETTING--Epidemiological survey of the population of a suburban town in western Netherlands. SUBJECTS--Cohort of 233 children aged 5-17 drawn at random from participants in the population survey. MAIN OUTCOME MEASURES--At least six annual timed overnight urine samples were obtained. The mean 24 hour sodium and potassium excretion during the follow up period was estimated for each participant and the sodium to potassium ratio calculated. Individual slopes of blood pressure over time were calculated by linear regression analysis. RESULTS--No significant association was observed between sodium excretion and the change in blood pressure over time. The mean systolic blood pressure slopes, however, were lower when potassium intake was higher (coefficient of linear regression -0.045 mm Hg/year/mmol; 95% confidence interval -0.069 to -0.020), and the change in systolic pressure was greater when the urinary sodium to potassium ratio was higher (0.356 mm Hg/year/unit; 95% confidence interval 0.069 to 0.642). In relation to potassium this was interpreted as a rise in blood pressure that was on average 1.0 mm Hg (95% confidence interval -1.65 to -0.35) lower in children in the upper part of the distribution of intake compared with those in the lower part. The mean yearly rise in systolic blood pressure for the group as a whole was 1.95 mm Hg. Urinary electrolyte excretion was not associated with diastolic blood pressure. CONCLUSION--Dietary potassium and the dietary sodium to potassium ratio are related to the rise in blood pressure in childhood and may be important in the early pathogenesis of primary hypertension.  相似文献   

12.
13.
A selective potassium leak is observed in resealed, human red blood cell ghosts when hemolysis is performed with distilled water at pH 6.5, 0 degrees C. The leak, which has a maximum near pH 6.7, is suppressed when either magnesium or a chelating agent is present in the hemolysing medium. The potassium leak has the additional property that it can be suppressed after resealing by washing the ghost membranes in a medium containing a low concentration of ATP or EDTA. The data suggest that through the dilution of endogenous chelating agents at hemolysis a potassium leak may be unmasked.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号