首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Estrogen signaling multiple pathways to impact gene transcription   总被引:2,自引:0,他引:2  
  相似文献   

5.
The study investigated the ability of 34 natural and synthetic chemicals to compete with [3H]17beta-estradiol (E2) for binding to bacterially expressed glutathione-S-transferase (GST)-estrogen receptors (ER) fusion proteins from five different species. Fusion proteins consisted of the ER D, E and F domains of human alpha (GST-hERalphadef), mouse alpha (GST-mERalphadef), chicken (GST-cERdef), green anole (GST-aERdef) and rainbow trout ERs (GST-rtERdef). All five fusion proteins displayed high affinity for E2 with dissociation constants (K(d)) ranging from 0.3 to 0.9 nM. Although, the fusion proteins exhibited similar binding preferences and binding affinities for many of the chemicals, several differences were observed. For example, alpha-zearalenol bound with greater affinity to GST-rtERdef than E2, which was in contrast to other GST-ERdef fusion proteins examined. Coumestrol, genistein and naringenin bound with higher affinity to the GST-aERdef, than to the other GST-ERdef fusion proteins. Many of the industrial chemicals examined preferentially bound to GST-rtERdef. Bisphenol A, 4-t-octylphenol and o,p' DDT bound with approximately a ten-fold greater affinity to GST-rtERdef than to other GST-ERdefs. Methoxychlor, p,p'-DDT, o,p'-DDE, p,p'-DDE, alpha-endosulfan and dieldrin weakly bound to the ERs from the human, mouse, chicken and green anole. In contrast, these compounds completely displaced [3H]E2 from GST-rtERdef. These results demonstrate that ERs from different species exhibit differential ligand preferences and relative binding affinities for estrogenic compounds and that these differences may be due to the variability in the amino acid sequence within their respective ER ligand binding domains.  相似文献   

6.
In MCF-7 breast cancer cells, hydroxytamoxifen (OH-Tam) up-regulates the estrogen receptor (ER) in a form unable to bind [(3)H]estradiol (E(2)). We show here that this property is not restricted to this antiestrogen. [(3)H]E(2) binding assays (whole cell assays, DCC assays on cell extracts) and enzyme immunoassays (Abbott) performed in parallel, establish the permanent presence of such unusual ERs in the absence of any exposure of the cells to a ligand. E(2) and the pure antiestrogen RU 58 668, which down-regulate ER, also decrease [(3)H]E(2) binding. In control cells, these ERs represent about the half of the whole receptor population; they also display a tendency to stabilize within the cell nucleus. Loss of E(2) binding ability appears irreversible, since we failed to label receptor accumulated under OH-Tam with [(3)H]E(2) or [(3)H]tamoxifen aziridine (TAZ). Cycloheximide (CHX), which blocks E(2)-induced down regulation of ER, failed to stabilize [(3)H]E(2) binding (whole cell assay) after an [(3)H]E(2) pulse (1 h), confirming that regulation of E(2) binding and peptide level are related to different regulatory mechanisms. Loss of binding ability could not be ascribed to any ER cleavage as demonstrated by Western blotting with a panel of ER antibodies raised against its various domains (67 kDa ER solely detected). We propose that loss of E(2) binding ability is related to the aging process of the receptor, i.e. it is progressively converted to a form devoted to degradation after it has accomplished its physiological role. Ligands may favor (E(2), RU 58 668) or impede (OH-Tam) this elimination process.  相似文献   

7.
The pivotal role of estrogens in the pain sensitivity has been investigated in many ways. Traditionally, it is ascribed to the slow genomic changes mediated by classical nuclear estrogen receptors (ER), ER?? and ER??, depending on peripheral estrogens. Recently, it has become clear that estrogens can also signal through membrane ERs (mERs), such as G-protein-coupled ER1 (GPER1), mediating the non-genomic effects. However, the spinal specific role played by ERs and the underlying cellular mechanisms remain elusive. The present study investigated the rapid estrogenic regulation of nociception at the spinal level. Spinal administration of 17??-estradiol (E2), the most potent natural estrogen, acutely produced a remarkable mechanical allodynia and thermal hyperalgesia without significant differences among male, female and ovariectomized (Ovx) rats. E2-induced the pro-nociceptive effects were partially abrogated by ICI 182,780 (ERs antagonist), and mimicked by E2-BSA (a mER agonist). Inhibition of local E2 synthesis by 1,4,6-Androstatrien-3,17-dione (ATD, a potent irreversible aromatase inhibitor), or blockade of ERs by ICI 182,780 produced an inhibitory effect on the late phase of formalin nociceptive responses. Notably, lumbar puncture injection of G15 (a selective GPER1 antagonist) resulted in similar but more efficient inhibition of formalin nociceptive responses as compared with ICI 182,780. At the cellular level, the amplitude and decay time of spontaneous inhibitory postsynaptic currents were attenuated by short E2 or E2-BSA treatment in spinal slices. These results indicate that estrogen acutely facilitates nociceptive transmission in the spinal cord via activation of membrane-bound estrogen receptors.  相似文献   

8.
Oestrogen receptors (ERs) are critical regulators of the behaviour of many cancers. Despite this, the roles and regulation of one of the two known ERs - ERβ- are poorly understood. This is partly because analyses have been confused by discrepancies between ERβ expression at mRNA and proteins levels, and because ERβ is expressed as several functionally distinct isoforms. We investigated human ERβ 5' untranslated regions (UTRs) and their influences on ERβ expression and function. We demonstrate that two alternative ERβ 5'UTRs have potent and differential influences on expression acting at the level of translation. We show that their influences are modulated by cellular context and in carcinogenesis, and demonstrate the contributions of both upstream open reading frames and RNA secondary structure. These regulatory mechanisms offer explanations for the non-concordance of ERβ mRNA and protein. Importantly, we also demonstrate that 5'UTRs allow the first reported mechanisms for differential regulation of the expression of the ERβ isoforms 1, 2 and 5, and thereby have critical influences on ERβ function.  相似文献   

9.
10.
11.
12.
In many vertebrates, estrogens are necessary to promote the growth and differentiation of the female reproductive system during development, and have important reproductive roles in both males and females. Medaka (Oryzias latipes) has three estrogen receptor (ER) subtypes, ERα, ERβ1 and ERβ2. To evaluate the three medaka ER (mER)-ligand interactions, we applied the ERE-luciferase reporter assay system to characterize each ER subtype. In this transient transfection assay system using mammalian cells, the mER proteins displayed estrogen-dependent activation. 17β-Estradiol (E(2)) and op'-DDT showed high activation irrespective of ERs. Endosulfan also exhibited activation; with less/no transactivity measured using other pesticides, i.e., heptachlor, carbendazim, deltamethrin, acephate, dimethoate and amitraz. It was generally observed that ERβ2 had higher activation potential than ERα and ERβ1. To understand the molecular mechanism of estrogen action via ER, we also conducted E(2) treatment where we observed a trigger in ERβ2 expression upon E(2) exposure. The present data suggest that ERβ2 is essential for female gonad maintenance. The data were supported by induction of vitellogenin (VTG) mRNA in the liver and reduced VTG receptor mRNA expression in the gonad of both sexes. The present work will provide a basic tool allowing future studies to examine the receptor-ligand interactions and endocrine disrupting mechanisms, and also expands our knowledge of estrogen action on reproductive development in medaka.  相似文献   

13.
Cultured female-derived human bone cells (hObs) responded by different parameters to different phytoestrogenic and vitamin D compounds. Pre- and post-menopausal hObs express ERα and ERβ mRNA with higher abundance of ERα. Pre-treatment with the less-calcemic vitamin D analog JKF 1624F(2)-2 (JKF) upregulated responsiveness to estrogens via modulation of ERs expression. These estrogenic compounds induce the expression and activity of 25 hydroxy-vitamin D(3)-1α hydroxylase (1OHase). We now analyzed the effects of carboxy-genistein (cG), carboxy-biocainin A (cBA) and carboxy-daidzein (cD), of BA, D or G and of licorice derived compounds glabridin (Glb) and glabrene (Gla) and estradiol-17β (E(2)) on DNA synthesis, creatine kinase specific activity (CK), intracellular and membranal E(2) binding and their modulations by JKF in hObs. We also analyzed modulation by phytoestrogenic compounds of 1OHase mRNA expression and activity. We showed that: (1) all compounds stimulated DNA synthesis and CK. (2) JKF and all estrogenic compounds modulated ERα and ERβ mRNA expression. (3) Pre-treatment with JKF increased DNA synthesis and CK responses only to E(2), D, G and Gla. (4) JKF increased the intracellular competitive binding only of E(2), D and G. (5) JKF abolished the membranal binding of all protein-bound estrogens. (6) JKF and all estrogenic compounds except the protein-bound ones up-regulated 1OHase expression and activity. In conclusion phytoestrogens and their analogs increase DNA synthesis and CK, and lead to increased production of 1,25(OH)(2)D(3) in hObs, while pre-treatment with JKF modulates the effect of estrogenic compounds via regulation of ERs mRNA expression in a yet unclear mechanism.  相似文献   

14.
The mechanisms by which varicocele affects fertility remain undetermined. Estrogens play a key role in the human male reproduction and human sperm expresses the estrogen receptors (ERs) and aromatase. In this study, by Western blotting we evidenced the ERs content concomitantly in healthy sperm and in oligoastenoteratozoospermic (OAT) samples without and with varicocele. In varicocele a strong reduction of the ERβ was observed, while the ERα was almost absent. Besides, transmission electron microscopy (TEM) confirmed the reduction of ERs expression in "varicocele" sperm, indicating that varicocele has a detrimental effect on sperm structure at molecular level. To further define the estrogen significance in male gamete and the pathophysiology of varicocele we investigated both the expression of ERα and ERβ in normal and pathologic sperm samples as well as we evaluated estradiol (E2) action on lipid and glucose sperm metabolism. Responses to E2 treatments on cholesterol efflux, protein tyrosine phosphorylations, motility, and acrosin activity in varicocele sperm were reduced or absent. The evaluation of the triglycerides content, lipase and acyl-CoA dehydrogenase activities, suggest that E2 exerts a lipolytic effect on human sperm metabolism. Concerning glucose metabolism, it appears that E2 induces G6PDH activity concomitantly to the insulin secretion. In "varicocele" sperm, the E2 did not induce energy expenditure. OAT sperm had E2-responsiveness but in a lesser extent with respect healthy sperm. This study discovered a novel role for E2/ERs in human sperm physiology, since they modulate sperm metabolism and new detrimental effects related to the pathophysiology of the varicocele condition.  相似文献   

15.
Rapid, nongenomic effects of 17 beta-estradiol (E(2)) in endothelial cells are postulated to arise from membrane-associated estrogen receptors (ERs), which have not been visualized in vascular tissue. To identify membrane ERs, we used multiple site-directed ER alpha or ER beta antibodies to label en face rat cerebral and coronary arterial endothelia. Western blots revealed a novel 55-kDa ER alpha isoform. Three-dimensional images of cells labeled with these antibodies and markers for the nucleus and caveolin-1 were acquired with a wide-field microscope, deconvolved, and numerically analyzed. We found ER alpha in the nucleus and cell periphery, where one-third colocalized with caveolin-1. The receptor location was dependent on the epitope of the antibody. Human ovarian surface epithelium produced similar results; but in rat myometrium, the distribution was epitope independent and nuclear. ER beta distribution was predominantly intranuclear and epitope independent. A small amount of ER alpha colocalized with ER beta within the nucleus. The results were identical in both arterial preparations and insensitive to E(2). We postulate that the different ER alpha conformations at the membrane, in the nucleus, and between different cell types allow E(2) to trigger cell- and location-specific signaling cascades.  相似文献   

16.
17.
This article is part of a Special Issue “Estradiol and cognition”.Over the past 30 years, research has demonstrated that estrogens not only are important for female reproduction, but also play a role in a diverse array of cognitive functions. Originally, estrogens were thought to have only one receptor, localized exclusively to the cytoplasm and nucleus of cells. However, it is now known that there are at least three estrogen receptors (ERs): ERα, ERβ and G-protein coupled ER1 (GPER1). In addition to being localized to nuclei, ERα and ERβ are localized to the cell membrane, and GPER1 is also observed at the cell membrane. The mechanism through which ERs are associated with the membrane remains unclear, but palmitoylation of receptors and associations between ERs and caveolin are implicated in membrane association. ERα and ERβ are mostly observed in the nucleus using light microscopy unless they are particularly abundant. However, electron microscopy has revealed that ERs are also found at the membrane in complimentary distributions in multiple brain regions, many of which are innervated by dopamine inputs and were previously thought to contain few ERs. In particular, membrane-associated ERs are observed in the prefrontal cortex, dorsal striatum, nucleus accumbens, and hippocampus, all of which are involved in learning and memory. These findings provide a mechanism for the rapid effects of estrogens in these regions. The effects of estrogens on dopamine-dependent cognition likely result from binding at both nuclear and membrane-associated ERs, so elucidating the localization of membrane-associated ERs helps provide a more complete understanding of the cognitive effects of these hormones.  相似文献   

18.
JM Renoir 《Steroids》2012,77(12):1249-1261
Estrogen receptors α (ERα) and β (ERβ) are nuclear receptors which transduce estradiol (E2) response in many tissues including the mammary gland and breast cancers (BC). They activate or inhibit specific genes involved in cell cycle progression and cell survival through multiple enzyme activities leading to malignant transformation. Hormone therapy (antiestrogens (AEs) and aromatase inhibitors (AIs) have been widely used to block the mitogenic action of E2 in patients with ER-positive BC. ERs act in concert with numerous other proteins outside and inside the nucleus where co-activators such as histone modifying enzymes help reaching optimum gene activation. Moreover, E2-mediated gene regulation can occur through ERs located at the plasma membrane or G protein-coupled estrogen receptor (GPER), triggering protein kinase signaling cascades. Classical AEs as well as AIs are inefficient to block the cascades of events emanating from the membrane and from E2 binding to GPER, leading patients to escape anti-hormone treatments and hormone therapy resistance. Many pathways are involved in resistance, mostly resulting from over-expression of growth factor membrane receptors, in particular the HER2/ErbB2 which can be inhibited by specific antibodies or tyrosine kinases inhibitors. Together with the Hsp90 molecular chaperone machinery, a complex interplay between ERs, co-activators, co-repressors and growth factor-activated membrane pathways represents potent targets which warrant to be manipulated alone and in combination to designing novel therapies. The discovery of new potential targets arising from micro array studies gives the opportunity to activate or inhibit different new ER-modulating effectors for innovative therapeutic interventions.  相似文献   

19.
雌激素(E2)和雌激素受体(ER)在E2诱发的肿瘤中起着极其重要的作用.ER共调节因子通过与ER相互作用调节其生物学功能.PES1主要表达于E2的重要靶器官如乳腺、卵巢等组织中,并在乳腺癌细胞中高表达.用PCR技术构建HA标签的PES1全长以及1~322aa、312 ~588aa和414~588aa三个不同功能区片段的重组质粒.将不同的重组质粒与FLAG-ERα和或FLAGC-ERβ共转染293T细胞后进行免疫共沉淀,以验证PES1与ER是否有相互作用以及相互作用的区域.用含雌激素受体作用元件的荧光素酶报告基因( ERE-LUC)检测PES1对ERα和ERβ转录激活活性的影响.结果表明,PES1与ERα和ERβ均相互作用,且PES1的1~ 322aa区域与ERα和ERβ相结合.PES1能特异地、E2非依赖性抑制ERβ的转录激活活性.实验结果显示,PES1是一个新的ER共调节因子,需要进一步研究其在ERβ信号通路及其在E2诱发的肿瘤的作用.  相似文献   

20.
ME Baker  KY Uh  C Chandsawangbhuwana 《Steroids》2012,77(12):1192-1197
Recently, binding of 5-androsten-3β,17β-diol (Δ(5)-androstenediol) to human estrogen receptor-beta (ERβ) was found to repress microglia-mediated inflammation, which is associated with various neurodegenerative diseases, such as multiple sclerosis. In contrast, binding of estradiol to ERβ resulted in little or no repression of microglia-mediated inflammation. Binding of Δ(5)-androstenediol to ERβ, as well as to ERα, is unexpected because unlike estradiol, Δ(5)-androstenediol has a saturated A ring and a C19 methyl group. To begin to elucidate the interaction of Δ(5)-androstenediol with both ERs, we constructed 3D models of Δ(5)-androstenediol with human ERα and ERβ for comparison with the crystal structures of estradiol in ERα and ERβ. Conformational flexibility in human ERα and ERβ accommodates the C19 methyl on Δ(5)-androstenediol. This conformational flexibility may be relevant for binding of other Δ(5)-steroids with C19 methyl substituents, such as 25-hydroxycholesterol and 27-hydroxycholesterol, to ERs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号