首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTION: The liver is the main source of serum insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) and the concentration of these proteins might reflect liver function. METHODS: In a retrospective longitudinal study we examined serum levels of total and free IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3 and IGFBP-6 in 21 adult patients with end-stage liver disease before and after orthotopic liver transplantation (LTX) by sensitive and specific RIAs. In each patient, the mean value of at least three measurements before and after LTX was calculated. RESULTS: Before LTX, serum levels of total and free IGF-I, IGF-II, IGFBP-3 were low and showed a rapid and significant increase in almost all patients after successful LTX (total IGF-I: 30 +/- 7 vs. 256 +/- 30 ng/ml, p < 0.001; free IGF-I: 1.3 +/- 0.3 vs. 3.5 +/- 0.6 ng/ml, p < 0.01; IGF-II: 177 +/- 28 vs. 618 +/- 30 ng/ml, p < 0.001; IGFBP-3: 1,230 +/- 136 vs. 3,665 +/- 264 ng/ml, p < 0.001). In contrast, IGFBP-1 was found to be high immediately before LTX, and declined to normal levels after LTX (210 +/- 40 vs. 90 +/- 15 ng/ml, p < 0.01), while IGFBP-2 did not show any significant changes (1,154 +/- 296 vs. 1,303 +/- 192 ng/ ml). Positive correlations were found between IGF-I, IGF-II or IGFBP-3, and serum pseudocholinesterase (R = 0.50, 0.72 and 0.61 respectively, p < 0.001). Negative correlations were found between IGF-I, IGF-II or IGFBP-3, and prothrombin time (R = 0.50, 0.59 and 0.51 respectively, p < 0.001). CONCLUSION: Patients with severe liver disease show decreased levels of total and free IGF-I, IGF-II and IGFBP-3, and increased levels of IGFBP-1. These abnormalities are promptly normalized after successful LTX. Thus, serum levels of IGF-I, IGF-II and IGFBP-3 might be useful parameters for the assessment of liver function.  相似文献   

2.
Wang Z  Liu T  Chen Y  Zhang X  Liu M  Fu H  Liu D 《DNA and cell biology》2012,31(6):1095-1099
The mammalian target of rapamycin (mTOR) is a Ser/Thr kinase. It plays an evolutionarily conserved role in regulating cell growth, proliferation, survival, and metabolism via different cellular processes. The purpose of this study was to explore the inhibitory effects of CCI-779 (temsirolimus), a specific mTOR inhibitor, on mTOR signaling, and examine the mechanism of cell growth suppression by CCI-779 in Cashmere goat fetal fibroblasts (GFb cells). GFb cells were sensitive to CCI-779 and the survival rate of cells treated with >3.0?μM of CCI-779 was significantly reduced compared with the control (p<0.01). CCI-779 inhibited the phosphorylation of mTOR (at Ser2448) and S6 (at Ser240/244), and the expression of mTOR, p70S6K, and S6. Thus, CCI-779 was toxic to GFb cells, and it induced a dose-dependent decrease in cell proliferation and caused G1/S cell cycle arrest. Taken together, these data show that CCI-779 can inhibit mTOR signaling and proliferation in GFb cells in vitro. Therefore, mTOR is an important regulator for GFb cell growth and proliferation.  相似文献   

3.
PTEN is a tumor suppressor gene whose loss of function is observed in approximately 40-50% of human cancers. Although insulin-like growth factor binding protein-2 (IGFBP-2) was classically described as a growth inhibitor, multiple recent reports have shown an association of overexpression and/or high serum levels of IGFBP-2 with poor prognosis of several malignancies, including gliomas. Using an inducible PTEN expression system in the PTEN-null glioma cell line U251, we demonstrate that PTEN-induction is associated with reduced proliferation, increased apoptosis, and a substantial reduction of the high levels of IGFBP-2 expression. The PTEN-induced decrease in IGFBP-2 expression could be mimicked with the PI3-kinase inhibitor LY294002, indicating that the lipid phosphatase activity of PTEN is responsible for the observed effect. However, the rapamycin analog CCI-779 did not affect IGFBP-2 expression, suggesting that the PTEN-induced decrease in IGFBP-2 expression is not attributable to decreased mTOR signalling. Recombinant human IGFBP-2 was unable to rescue U251-PTEN cells from the antiproliferative effects of PTEN, and IGFBP-2 siRNA did not affect the IGF-dependent or -independent growth of this cell line. These results suggest that the clinical data linking IGFBP-2 expression to poor prognosis may arise, at least in part, because high levels of IGFBP-2 expression correlate with loss of function of PTEN, which is well known to lead to aggressive behavior of gliomas. Our results motivate translational research regarding the relationship between IGFBP-2 expression and loss of function of PTEN.  相似文献   

4.
Breast-fed preterm infants often show a better outcome, partly ascribed to the benefit of insulin-like growth factors (IGFs) and their binding proteins (IGFBP). We compared IGF-I, IGF-II, IGFBP-2 and IGFBP-3 levels, measured by radioimmunoassays in milk samples from 30 mothers of preterm (<31 weeks) and from 19 mothers of term (>37 weeks) infants at days 7 and 21 postpartum. Proteolysis of IGFBP-2 within mother's milk and digestion of (125)I-IGF-II and (125)I-IGFBP-2 by gastric juice from neonates were assessed by electrophoretic techniques. Mean concentrations did not differ between preterm and term milk: IGF-I (2.8 +/- 0.2 vs. 2.3 +/- 0.1 ng/ml), IGF-II (12.0 +/- 0.4 vs. 12.2 +/- 0.5 ng/ml), IGFBP-3 (100.0 +/- 5.1 vs. 80.0 +/- 5.8 ng/ml), but did so for IGFBP-2 (3,144 +/- 172 vs. 2,428 +/- 188 ng/ml, p < 0.02). Immunoblots revealed 42% (p < 0.05) more IGFBP-2 fragments of 14 and 25 kDa in preterm milk. Incubation with gastric juice caused cleavage of (125)I-IGFBP-2 and partial cleavage of (125)I-IGF-II. Mutual complexation protected IGF-II and IGFBP-2 from cleavage, suggesting that both are likely to arrive in the bowel in an intact form to exert promotive effects. The results provide further evidence that IGFBP-2 and IGF-II in breast milk are relevant factors for the early development of preterm infants.  相似文献   

5.
The mTORC1 complex (mammalian target of rapamycin (mTOR)-raptor) is modulated by mitogen-activated protein (p44/42 MAP) kinases (p44/42) through phosphorylation and inactivation of the tuberous sclerosis complex. However, a role for mTORC1 signaling in modulating activation of p44/42 has not been reported. We show that in two cancer cell lines regulation of the p44/42 MAPKs is mTORC1-dependent. In Rh1 cells rapamycin inhibited insulin-like growth factor-I (IGF-I)-stimulated phosphorylation of Thr(202) but not Tyr(204) and suppressed activation of p44/42 kinase activity. Down-regulation of raptor, which inhibits mTORC1 signaling, had a similar effect to rapamycin in blocking IGF-I-stimulated Tyr(204) phosphorylation. Rapamycin did not block maximal phosphorylation of Tyr(204) but retarded the rate of dephosphorylation of Tyr(204) following IGF-I stimulation. IGF-I stimulation of MEK1 phosphorylation (Ser(217/221)) was not inhibited by rapamycin. Higher concentrations of rapamycin (> or =100 ng/ml) were required to inhibit epidermal growth factor (EGF)-induced phosphorylation of p44/42 (Thr(202)). Rapamycin-induced inhibition of p44/42 (Thr(202)) phosphorylation by IGF-I was reversed by low concentrations of okadaic acid, suggesting involvement of protein phosphatase 2A (PP2A). Both IGF-I and EGF caused dissociation of PP2A catalytic subunit (PP2Ac) from p42. Whereas low concentrations of rapamycin (1 ng/ml) inhibited dissociation of PP2Ac after IGF-I stimulation, it required higher concentrations (> or =100 ng/ml) to block EGF-induced dissociation, consistent with the ability for rapamycin to attenuate growth factor-induced activation of p44/42. The effect of rapamycin on IGF-I or insulin activation of p44/42 was recapitulated by amino acid deprivation. Rapamycin effects altering the kinetics of p44/42 phosphorylation were completely abrogated in Rh1mTORrr cells that express a rapamycin-resistant mTOR, whereas the effects of amino acid deprivation were similar in Rh1 and Rh1mTORrr cells. These results indicate complex regulation of p44/42 by phosphatases downstream of mTORC1. This suggests a model in which mTORC1 modulates the phosphorylation of Thr(202) on p44/42 MAPKs through direct or indirect regulation of PP2Ac.  相似文献   

6.
We present immunohistochemical evidence that the mTOR/p70s6k pathway is activated in pancreatic tumors and show that the mTOR inhibitor and rapamycin analog CCI-779 potently suppresses the proliferation of pancreatic cancer cells. Consistent with a recent study, CCI-779 increased c-Jun phosphorylation (Ser63) in a dose- and time-dependent manner, and induced apoptosis in p53-defective BxPC-3 cells. In contrast to the study, however, we observed that CCI-779 concomitantly increased c-Jun protein levels and that its ability to induce apoptosis might not require the activated c-Jun. Furthermore, CCI-779 neither induced c-Jun phosphorylation in other p53-defective pancreatic cancer cells (MiaPaCa-2) nor inhibited their proliferation. c-Jun, in fact, appeared to be partly responsible for the resistance of MiaPaCa-2 cells to CCI-779. Together, these results indicate a complex role for c-Jun in cellular responses to CCI-779 and provide an important basis for investigating CCI-779 further as a potential therapeutic agent for pancreatic tumors.  相似文献   

7.
AIM: To report effects of weight-based recombinant human insulin-like growth factor-I (rhIGF-I) on IGF axis parameters in children with hyperinsulinism. METHODS: Open label trial with subcutaneous rhIGF-I (40 microg/kg/dose). Patients studied were children (1 month to 11 years) with diffuse hyperinsulinism (n = 7). Serial serum IGF and insulin-like growth factor binding protein (IGFBP) concentrations were measured by RIA and analyzed by linear Pearson regression. RESULTS: Following the initial rhIGF-I dose, total insulin-like growth factor-I (IGF-I) rose by 56% at 30 min (p < 0.01) and 85% at 120 min (p < 0.02). Serum IGF-II, IGFBP-2, and IGFBP-3 levels did not change. Peak serum IGF-I levels within 12 h of the initial rhIGF-I dose were 167-700 mg/ml. The variable peak IGF-I response is attributable in part to IGFBP-3 differences across this pediatric age range. Models of rhIGF-I dosing based upon body surface area (BSA) or initial IGFBP-3 resulted in predictable peak serum IGF-I levels (r = 0.78; p < 0.03). Recalculating rhIGF-I dosing based upon the BSA . IGFBP-3 product correlated closely with peak IGF-I level (r = 0.85; p < 0.007). CONCLUSIONS: Weight-based IGF-I dosing in this cohort resulted in variable IGF-I levels. Considering BSA and serum IGFBP-3 concentration in children is appropriate for subcutaneous IGF-I administration. A combination of these values may yield predictable individualization of rhIGF-I dosing.  相似文献   

8.
Previous studies revealed altered levels of the circulating insulin-like growth factor-I (IGF-I) and of its binding protein-3 (IGFBP-3) in subjects with coronary atherosclerosis, metabolic syndrome and premature atherosclerosis. Hyperlipidemia is a powerful risk factor of atherosclerosis. We expected IGF-I and IGFBP-3 alterations in subjects with moderate/severe hyperlipidemia but without any clinical manifestation of atherosclerosis. Total IGF-I and IGFBP-3 were assessed in 56 patients with mixed hyperlipidemia (MHL; cholesterol >6.0 mmol/l, triglycerides >2.0 mmol/l), in 33 patients with isolated hypercholesterolemia (IHC; cholesterol >6.0 mmol/l, triglycerides <2.0 mmol/l), and in 29 healthy controls (cholesterol<6.0 mmol/l, triglycerides<2.0 mmol/l). The molar ratio of IGF-I/IGFBP-3 was used as a measure of free IGF-I. IHC subjects differed from controls by lower total IGF-I (164+/-60 vs. 209+/-73 ng/ml, p=0.01) and IGF-I /IGFBP-3 ratio (0.14+/-0.05 vs. 0.17+/-0.04, p=0.04). Compared to controls, MHL subjects had lower total IGF-I (153+/-54 ng/ml, p=0.0002) and IGFBP-3 (2.8+/-0.6 mg/ml, p<0.0001), but higher IGF-I/IGFBP-3 ratio (0.25+/-0.06, p<0.0001). Differences remained significant after the adjustment for clinical and biochemical covariates, except for triglycerides. Patients with both IHC and MHL have lower total IGF-I compared to controls. The mechanism is presumably different in IHC and MHL. Because of prominent reduction of IGFBP-3 in patients with MHL, they have reduced total IGF-I despite the actual elevation IGF-I/IGFBP-3 ratio as a surrogate of free IGF-I.  相似文献   

9.
We investigated in a randomized double-blind placebo-controlled study the effects of zinc supplementation (2 mg/kg/day) for 12 weeks on growth, serum insulin-like growth factor-I (IGF-I) and insulin-like factor binding protein-3 (IGFBP-3) on 3- to 9-month-old infants with nonorganic failure to thrive (NOFTT). 25 infants completed the study, 14 received zinc supplementation (group A), and 11 received placebo (group B). The control group for baseline measurements was composed of 10 age-matched normal growing infants. There were no significant changes in weight for age, length for age, or weight for length during the entire study period in either group A or B. Serum IGF-I levels at baseline were similar in all the groups. After 12 weeks of therapy, serum IFG-I levels increased significantly only in the zinc-supplemented group, from 40.3 +/- 7 ng/ml at baseline to 65 +/- 8 ng/ml (p < 0.05). There was a marked difference in serum IGF-I levels between the zinc-supplemented group and the placebo group after 12 weeks: 65 +/- 8 vs. 49.4 +/- 5 ng/ml (p = 0.058, 95% CI of difference 9.88-21.31). No change was demonstrated in serum IGFBP-3 levels in either study group. We conclude that although zinc supplementation increased serum IGF-I levels, it did not improve the growth parameters of infants with NOFTT.  相似文献   

10.
The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway promotes melanoma tumor growth and survival while suppressing autophagy, a catabolic process through which cells collect and recycle cellular components to sustain energy homeostasis in starvation. Conversely, inhibitors of the PI3K/AKT/mTOR pathway, in particular the mTOR inhibitor temsirolimus (CCI-779), induce autophagy, which can promote tumor survival and thus, these agents potentially limit their own efficacy. We hypothesized that inhibition of autophagy in combination with mTOR inhibition would block this tumor survival mechanism and hence improve the cytotoxicity of mTOR inhibitors in melanoma. Here we found that melanoma cell lines of multiple genotypes exhibit high basal levels of autophagy. Knockdown of expression of the essential autophagy gene product ATG7 resulted in cell death, indicating that survival of melanoma cells is autophagy-dependent. We also found that the lysosomotropic agent and autophagy inhibitor hydroxychloroquine (HCQ) synergizes with CCI-779 and led to melanoma cell death via apoptosis. Combination treatment with CCI-779 and HCQ suppressed melanoma growth and induced cell death both in 3-dimensional (3D) spheroid cultures and in tumor xenografts. These data suggest that coordinate inhibition of the mTOR and autophagy pathways promotes apoptosis and could be a new therapeutic paradigm for the treatment of melanoma.  相似文献   

11.
Insulin-like growth factors (IGFs) are important regulators of epithelial cell growth. The mitogenic activity of these factors is influenced by the levels of extracellular IGF binding proteins, including insulin-like growth factor binding protein 3 (IGFBP-3). In the present report we study the effects of epidermal growth factor (EGF) and all-trans-retinoic acid (RA) on IGFBP-3 RNA and protein levels in human papillomavirus-immortalized cervical epithelial cells. Treatment of ECE16-1 cells with 3–20 ng/ml EGF causes a marked reduction in IGFBP-3 levels. In contrast, 1 μM RA increases IGFBP-3 mRNA and protein levels in the presence or absence of 20 ng/ml EGF. The response is concentration dependent with a half-maximal increase observed at 1 nM RA. RA is able to reverse the EGF suppression when added simultaneously or 3 days after initiation of EGF treatment. Conversely, when cells are treated with RA, IGFBP-3 levels increase within 24 h and subsequent addition of EGF is without effect. Thus, the RA-dependent increase in IGFBP-3 levels is dominant over the EGF suppression. The increased IGFBP-3 levels are correlated with RA suppression of proliferation. Similar RA effects on IGFBP-3 mRNA levels were observed in other cervical epithelial cell lines (i.e., ECE16-D1, ECE16-D2, and CaSki). These results suggest that RA may act to inhibit cervical cell growth by increasing IGFBP-3 levels and reducing the extracellular concentration of free insulin-like growth factor I (IGFI) and/or, alternatively, IGFBP-3 may inhibit cell growth by direct effects on the cell, independent of IGFI. © 1994 Wiley-Liss, Inc.  相似文献   

12.
The aim of this study was to determine wether continuous heavy physical activities as well as lack of food and sleep during military training (three weeks of conditioning followed by a five-day combat course) alter serum concentrations of IGF-I and/or its binding proteins, evaluating the relationship to metabolic changes. Before and after training, we measured serum levels of both total and free IGF-I, IGFBP-1 and IGFBP-3 as well as plasma levels of branched-chain amino acids (valine, leucine and isoleucine) and glucose from 26 cadets (21 +/- 2 yr). Total and free IGF-I levels were decreased after training from 228 +/- 12 to 160 +/- 7 ng/ml and from 0.80 +/- 0.08 to 0.52 +/- 0.06 ng/ml, p < 0.001 respectively) as well as IGFBP-3 (p < 0.001), while IGFBP-1 levels were increased (p < 0.001). BCAA levels were decreased from 245.4 +/- 7.5 to 215.9 +/- 5.1 micromol/l, p < 0.001, while those of glucose remained unchanged. There were correlations between changes in total IGF-I and IGFBP-3 (p < 0.05) and between free IGF-I and IGFBP-1 (p < 0.01). Several correlations appeared between changes in all the components of the IGF-I axis and branched-chain amino acids. We concluded that responses of the IGF-I system during an intense training could represent an adaptative response to the encountered energy deficiency, resulting a diversion of substrate from growth to acute metabolic needs.  相似文献   

13.
Anabolic effects of exercise are mediated, in part, by fibroblast growth factor-2 (FGF-2), insulin-like growth factor-I (IGF-I), and growth hormone (GH). To identify local vs. systemic modification of these mediators, 10 male subjects performed 10 min of unilateral wrist-flexion exercise. Blood was sampled from catheters placed in basilic veins of both arms. Lactate was significantly increased only in the exercising arm. FGF-2 decreased dramatically (P < 0.01) in both the resting (from 1.49 +/- 0.32 to nadir at 0.11 +/- 0.11 pg/ml) and exercising arm (1.80 +/- 0.60 to 0.29 +/- 0.14 pg/ml). Small but significant increases were found in both the resting and exercising arm for IGF-I and IGF binding protein-3 (IGFBP-3). GH was elevated in blood sampled from both the resting (from 1.04 +/- 0.68 to a peak of 2.57 +/- 0.53 ng/ml) and exercising arm (1.04 +/- 0.66 to 2.43 +/- 0.42 ng/ml, P < 0.05). Unilateral wrist exercise was not sufficiently intense to increase circulating lactate or heart rate, but it led to systemic changes in GH, IGF-I, IGFBP-3, and FGF-2. Low-intensity exercise involving small muscle groups can influence the circulating levels of growth factors.  相似文献   

14.
BACKGROUND: Recent studies have shown that immunocompetent cells synthesize and express growth hormone (GH), growth hormone receptors (GH-R), insulin-like growth factor I (IGF-I), IGF-I receptors (IGF-I-R) and different insulin-like growth factor binding proteins (IGFBPs). The aim of the current study was to evaluate the regulation of IGFBP and IGF-I secretion from immunocompetent cells by different mitogens. METHODS/RESULTS: We studied the in vitro secretion pattern of IGFBPs and IGF-I from human peripheral blood mononuclear cells (PBMC), derived from 10 normal adults and 8 GH-deficient patients with adult onset. In serum-free conditioned medium of unstimulated PBMC, derived from normal adults, Western ligand blotting (1D-WLB) revealed a 24-kD, a 34-kD and a 39/43-kD doublet band to be most prominent. According to their molecular weight and two-dimensional Western ligand blot analysis (2D-WLB), these bands are deglycosylated IGFBP-4, IGFBP-2 and IGFBP-3, respectively. When the cells were treated with the T-cell mitogen phytohemagglutinin (PHA) (10 microg/ml), a differential stimulation of IGFBPs was found with a 2.57 +/- 0.48-fold increase of IGFBP-4 (p < 0.01), a 1.55 +/- 0.13-fold increase of IGFBP-2 (p < 0.01), and a 1.35 +/- 0.19-fold increase of IGFBP-3 (n.s.). In contrast, treatment with the B-cell mitogen pokeweed mitogen (PWM) (10 microg/ml) caused only a modest 1.40 +/- 0.07-fold increase of IGFBP-4 (p < 0.01). Treatment with rhGH (100 ng/ml) or rhIGF-I (200 ng/ml) caused no significant induction of any specific band, respectively. In contrast to the secretion pattern of IGFBPs, IGF-I secretion of the PBMC was not stimulated by either PHA or PWM, but showed a significant increase after GH incubation (p < 0.01). A similar differentiated secretion pattern of IGFBPs and IGF-I was also observed in the conditioned medium of PBMC, derived from GH-deficient patients. CONCLUSION: In summary, at least three different IGFBPs are secreted by human PBMC. Secretion of IGFBPs by PBMC is differentially regulated by different lymphocyte mitogens. Secretion of IGFBPs by PBMC is independent of GH or IGF-I, whereas the secretion of IGF-I is stimulated by GH. PBMC derived from normal adults and GH-deficient patients show similar patterns of IGF-I and IGFBPs secretion, thus indicating that the paracrine/autocrine IGF-I-IGFBPs interactions of the PBMC are not altered by pituitary GH deficiency.  相似文献   

15.
16.
17.
We tested whether IGFBP-1, a modulator of IGF-I action, would play a role in the pathogenesis of growth failure and metabolic picture of Turner syndrome. Fasting serum levels of IGFBP-1 were assessed in nineteen girls with Turner syndrome (aging 6.5 to 17.2 years) by radioimmunoassay. Our patients showed normal values of IGFBP-1 (mean +/- SD: 68.6 +/- 32.5 micrograms/l, range: 16 to 134 micrograms/l; range for age and pubertal stage-matched normal children: 15 to 180 micrograms/l). IGFBP-1 levels inversely correlated with bone age (p < 0.05), weight (p < 0.001), percentage of ideal body weight (p < 0.002) and body mass index (BMI) (p < 0.001). Our results seem to rule out a role of IGFBP-1 in the pathogenesis of growth failure in Turner syndrome. The close inverse relationship between IGFBP-1 levels and BMI suggests the serum concentrations of IGFBP-1 to be regulated by the nutritional status. Due to IGFBP-1 inhibiting action on IGF biological activity, the reduction of IGFBP-1 levels in overweight subjects might represent a mechanism to enhance the IGF insulin-like activity, thus supplementing the insulin action.  相似文献   

18.
Summary Multiple factors contribute to the growth retardation which is a characteristic feature of uncontrolled diabetes. In this report we have examined the effects of streptozotocin-induced (STZ) diabetes on expression of insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-1 (IGFBP-1) in various tissues. As early as 7 days after STZ administration there was a modest reduction in IGF-I mRNA abundance. The reduction (10–30%) was of similar magnitude in each of the 7 tissues examined; liver, kidney, lung, diaphragm, quadraceps, heart and adipose tissue. However, the reduction achieved statistical significance only in the lung (p < 0.05) and diaphragm (p < 0.01). A further reduction in IGF-I mRNA abundance was seen in many tissues, 32 and 91 days after STZ administration. In contrast to the decrease in IGF-I mRNA, IGFBP-1 mRNA was significantly increased in the liver and kidney of diabetic rats. IGFBP-1 mRNA was detectable at only very low levels in other tissues but was increased in diabetic rats compared non-diabetic rats. In diabetic rats, a highly significant correlation (R = 0.75, p < 0.001) between hepatic IGFBP-1 mRNA and glucose was observed whereas there was no significant correlation between serum glucose and hepatic IGF-I mRNA abundance (R = 0.24, p = NS). Treatment of diabetic rats with insulin resulted in a small, non significant increase in hepatic and renal IGF-I mRNA and a significant decrease in renal IGFBP-1 mRNA abundance. The observations reported here are consistent with the hypothesis that diminished IGF-I expression and inhibition of available IGF-1 by increased levels of IGFBP-1 may explain the impaired growth seen in diabetic animals.  相似文献   

19.
We investigated the effect of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) on 3-O-methylglucose transport in incubated human skeletal muscle strips. Increasing physiological concentrations of IGF-II stimulated glucose transport in a dose-dependent manner. Glucose transport was maximally stimulated in the presence of 100 ng/ml (13.4 nM) of IGF-II, which corresponded to the effect obtained by 100 microU/ml (0.6 nM) of insulin. Exposure of muscle strips to IGFBP-1 (500 ng/ml) inhibited the maximal effect of IGF-II on glucose transport by 40%. Thus, it is conceivable that IGF-II and IGFBP-1 are physiological regulators of the glucose transport process in human skeletal muscle.  相似文献   

20.
Alterations in growth caused by neonatal malnutrition may be mediated in part by changes in insulin-like growth factor (IGF) and IGF binding protein (IGFBP) expression. Since the neonatal rat cerebellum undergoes a transient, proliferative growth phase in the first two weeks of life, this structure was used to determine whether alterations in circulating and tissue IGFs and IGFBPs may mediate effects of impaired nutrition on the developing central nervous system. Gravid rats were placed on a 4% (protein-calorie deprived, D) or 20% (control, C) protein diets one day prior to delivery and allowed to nurse their pups postpartum. Pups nursing from D mothers received a limited volume of milk and were calorically deprived. Some litters of D pups were foster fed by C mothers from day 8 to day 13 to constitute a recovery group (R). Cerebellar weight, protein, and DNA content in D pups were less than C, p<0.001. In R pups, DNA and protein returned to C levels by day 13. Between days 6 and 13, serum IGF-I levels rose from 158±18 to 210±18 ng/ml in C but remained low in D (47±6 ng/ml and 25±3 ng/ml), respectively. In R pups, serum IGF-I partially recovered during this time, and increased from 49±5 to 110±7 ng/ml. In cerebellar extracts, IGF-I levels in both C and D were lower at 13 days than at 6 days, p<0.05 and p<0.005, respectively. IGF-I levels in C were similar at day 9 and day 11 and were consistently higher than D (11.84±0.83 vs 8.56±0.92 ng/g, p<0.02 C vs D). In R, IGF-I was reduced on day 11, but was similar to C on day 13. Serum IGF-II in D was lower than C, p<0.01, and did not increase in the R group. Cerebellar IGF-II was virtually undetectable in either group. Immunoprecipitation and ligand blotting studies of serum demonstrated that circulating levels of 32–34 K IGFBPs were increased 3–4 fold in D vs C, reflecting high levels of IGFBP-1 and/or-2, while levels of 24 K IGFBP-4 were lower in D vs C. By contrast, immunoprecipitation and ligand blotting of cerebellar extracts detected IGFBP-2 and-4, but did not detect IGFBP-1. Further, tissue levels of IGFBP-2 were not increased in D vs C, and levels of IGFBP-4 also were not markedly affected by nutritional deprivation. These results suggest that alterations in tissue content and the availability of IGF-I only modestly contributed to the effects of impaired nutrition in the developing central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号