首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Continuing evidence suggests that extremely low frequency magnetic fields (ELF MFs) can affect animal and human behavior. We have previously demonstrated that after a 15 min exposure to a pulsed ELF MF, with most power at frequencies between 0 and 500 Hz, human brain electrical activity is affected as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here, we report that a pulsed ELF MF affects the human EEG during the exposure period. Twenty subjects (10 males; 10 females) received both a magnetic field and a sham session of 15 min in a counterbalanced design. Analysis of variance (ANOVA) revealed that alpha activity was significantly lower over the occipital electrodes (O1, Oz, O2) [F(1,16) = 5.376, P < .01, eta2 = 0.418] after the first 5 min of magnetic field exposure and was found to be related to the order of exposure (MF-sham vs. sham-MF). This decrease in alpha activity was no longer significant in the 1st min post-exposure, compared to sham (P > .05). This study is among the first to assess EEG frequency changes during a weak (+/-200 microTpk), pulsed ELF MF exposure.  相似文献   

2.
  总被引:8,自引:0,他引:8  
An increasing number of reports have demonstrated a significant effect of extremely low frequency magnetic fields (ELF MFs) on aspects of animal and human behavior. Recent studies suggest that exposure to ELF MFs affects human brain electrical activity as measured by electroencephalography (EEG), specifically within the alpha frequency (8-13 Hz). Here we report that exposure to a pulsed ELF MF with most power at frequencies between 0 and 500 Hz, known to affect aspects of analgesia and standing balance, also affects the human EEG. Twenty subjects (10 males; 10 females) received both a magnetic field (MF) and a sham session in a counterbalanced design for 15 min. Analysis of variance (ANOVA) revealed that alpha activity was significantly higher over the occipital electrodes (O1, Oz, O2) [F(1,16) = 6.858; P =.019, eta2 = 0.30] and marginally higher over the parietal electrodes (P3, Pz, P4) [F(1,16) = 4.251; P =.056, eta2 = 0.21] post MF exposure. This enhancement of alpha activity was transient, as it marginally decreased over occipital [F(1,16) = 4.417; P =.052; eta2 = 0.216] and parietal electrodes [F(1,16) = 4.244; P =.056; eta2 = 0.21] approximately 7 min after MF exposure compared to the sham exposure. Significantly higher occipital alpha activity is consistent with other experiments examining EEG responses to ELF MFs and ELF modulated radiofrequency fields associated with mobile phones. Hence, we suggest that this result may be a nonspecific physiological response to the pulsed MFs.  相似文献   

3.
Female rats were implanted with mammary adenocarcinoma tissue and 25 days later exposed to 2,000-Hz magnetic fields 1 h a day for 9 days. Analysis showed that tumor weights and the levels of several reproductive hormones were not significantly different between treated and control animals. Other studies with a similar design have also reported no significant effects from magnetic field exposure. However, vaginal smear data from all animals revealed that handling and restraint stress may have confounded the detection of subtle magnetic field effects.  相似文献   

4.
The influence of sinusoidal 45-Hz magnetic fields on the brain functions of 20 volunteers was investigated in a double-blind study using spectral analysis of EEG and measurements of Omega potentials and reaction time (RT). The field strength was 1,000 A/m (1.26 mT) and the duration of exposure was 1 h. Ten volunteers were exposed to a continuous field and ten received an intermittent exposure (1 s on/1 s off). Each person received one real and one sham exposure. One half of the volunteers got the real exposure first and the sham treatment after at least 24 h. For the rest, the sequence was inverse. The measurements of EEG, omega potentials and RT were performed before and after each exposure. Several statistically significant changes were observed, most of them after intermittent exposure. In the EEG, an increase of alpha (7.6–13.9 Hz) activity and a decrease of delta (1.5–3.9 Hz) activity were observed. β waves (14.2–20 Hz) increased in the frontal derivations as did the total power in occipital derivations. The mean and peak frequencies of EEG increased mainly in the frontal derivations. No direct effects on RT were seen. Learning to perform the RT test (decrease of RT in repeated trials), however, seemed to be affected by the exposure. The persons who received real exposure first learned more slowly than those who got sham exposure first. Further experiments are necessary to confirm the findings and for understanding the mechanisms of the effects. © 1993 Wiley-Liss. Inc.  相似文献   

5.
ABSTRACT

Naturally, the presence of electromagnetic waves in our living environment affects all components of organisms, particularly humans and animals, as the large part of their body consists of water. In the present study, we tried to investigate the relation between exposure to the extremely low-frequency electromagnetic field (ELF-EMF) and common behaviors such as body weight, food and water intake, anorexia (poor appetite), plasma glucose concentration, movement, rearing and sniffing in rats. For this purpose, rats were exposed to 40 Hz ELF-EMF once a day for 21 days, then at days 1, 3, 7, 14 and 21 after exposure, any changes in the above-mentioned items were assessed in the exposed rats and compared to the non-exposed group as control. Body weight of irradiated rats significantly increased only a week after exposure and decreased after that. No significant change was observed in food and water intake of irradiated rats compared to the control, and the anorexia parameter in the group exposed to ELF-EMF was significantly decreased at one and two weeks after irradiation. A week after exposure, the level of glucose was significantly increased but at other days these changes were not significant. Movements, rearing and sniffing of rats at day 1 after exposure were significantly decreased and other days these changes did not follow any particular pattern. However, the result of this study demonstrated that exposure to ELF-EMF can alter the normal condition of animals and may represent a harmful impact on behavior.  相似文献   

6.
We seek to extend the recent suggestion that classical cyclotron resonance of biologically important ions is implicated in weak electromagnetic field-cell interactions. The motion of charged particles in a constant magnetic field and periodic electric field is examined under the simplifying assumption of no damping. Each of the nine terms of the relative dielectric tensor is found to have a dependence on functions that include the factor (omega 2 - omega 2B)-1, where omega B is the gyrofrequency. We also find a plasmalike decomposition of the electric field into oppositely rotating components that could conceivably act to drive oppositely charged ions in the same direction through helical membrane channels. For weak low-frequency magnetic fields, an additional feature arises, namely, periodic reinforcement of the resonance condition with intervals of the order of tens of msec for biological ions such as Li+, Na+, and K+.  相似文献   

7.
  总被引:2,自引:0,他引:2  
A miniaturized probe was designed and built to provide detailed data on fields induced by a uniform 60-Hz magnetic field in homogeneous models of rat and human. The probe employed three silver wires twisted and potted in an 8-cm hypodermic needle. The exposed tips of the wires formed three sensing electrodes with a centered ground; highly sensitive voltage measurements were enabled by a lock-in amplifier. Tests were conducted in a 1-mT rms field that was uniform within +/- 5%. The models were made by casting 1.5% agar at 1-S/m conductivity into plastic-foam molds. The rat model was scaled 1:1 as an adult (22 cm length; mass about 640 g). The human model was scaled 1:4 as an adult (height = 46.5 cm; mass 1.4 kg). The probe was inserted into each model in several regions, and readings of induced fields were made under different exposure geometries. Maximal strengths of fields induced near the surface of the torso were as high as 120 microV/cm in the laterally exposed rat model. Data extrapolated from the quarter-scale human model revealed that an induced field as high as 700 microV/cm could occur at the torso of a frontally exposed human adult. An overall size-scale factor of about 5 appears to be appropriate for experimental exposures of rats that are intended to simulate currents induced in human beings by magnetic fields. The average strength of electric fields induced in the torso by a 1-mT magnetic field is comparable to that by a vertical electric-field at 60 kV/m and 28 kV/m, respectively, for the rat and human.  相似文献   

8.
    
ABSTRACT

We examine the hypothesis that consciousness is a manifestation of the electromagnetic field, finding supportive factors not previously considered. It is not likely that traditional electrophysiological signaling modes can be readily transmitted throughout the brain to properly enable this field because of electric field screening arising from the ubiquitous distribution of high dielectric lipid membranes, a problem that vanishes for low-frequency magnetic fields. Many reports over the last few decades have provided evidence that living tissue is robustly sensitive to ultrasmall (1–100 nT) ELF magnetic fields overlapping the γ-frequency range often associated with awareness. An example taken from animal behavior (coherent bird flocking) lends support to the possibility of a disembodied electromagnetic consciousness. In contrast to quantum consciousness hypotheses, the present approach is open to experimental trial.  相似文献   

9.
    
The purpose of this study was to examine whether exposure to magnetic fields (MFs) relevant for magnetic resonance imaging (MRI) in clinical routine influences cell cycle progression in two tumor cell lines in vitro. HL60 and EA2 cells were exposed to four types of MFs: (i) static MF of 1.5 and 7.05 T, (ii) extremely low frequency magnetic gradient fields (ELFMGFs) with +/- 10 mT/m and 100 Hz, as well as +/- 100 mT/m and 100 Hz, (iii) pulsed high frequency MF in the radiofrequency (RF) range (63.6 MHz, 5.8 microT), and (iv) a combination of (i-iii). Exposure periods ranged from 1 to 24 h. Cell cycle distribution (G(0)/G(1), S, and G(2)/M phases) was analyzed by flow cytometry. Cell cycle analysis did not reveal differences between the exposed and the control cells. As expected, positive controls with irradiated (8 Gy) HL60 and EA2 cells showed a strong G(2)/M arrest. Using conditions that are relevant for patients during MRI, no influence of MFs on cell cycle progression was observed in these cell lines. Care was taken to control secondary parameters of influence, such as vibration by the MR scanner or temperature to avoid false positive results.  相似文献   

10.
    
  相似文献   

11.
We studied effects of alternating magnetic fields on the embryonic and fetal development of rats. Mated females of the Han:Wistar-strain were sham exposed or exposed continuously to a 50-Hz field or to a 20,000 pulse-per-second (pps) sawtooth magnetic field from day 0 to day 20 of pregnancy for 24 h/day until necropsied on day 20. The respective peak-to-peak intensities of the fields were 35.6 μT (sinewave) and 15.0 μT (sawtooth). Each treatment group contained 72 bred females. Control animals were kept under the same conditions without the magnetic field. No adverse effects were seen in the dams. The mean numbers of implantations and living fetuses per litter were statistically significantly increased in the 50-Hz group. There were, however, three total resorptions of litters in dams of the control group, which contributed to the difference in the number of living fetuses. The corrected body-mass gains (gains without uterine content) of dams were similar in all groups. Pregnancy rates, incidences of resorptions. late fetal deaths, and fetal body masses were similar in all groups. The incidence of fetuses with minor skeletal anomalies was statistically significantly increased in both exposed groups. Only one serious malformation (anophthalmia, sawtooth-exposed group) and a few minor visceral malformations were found. In conclusion, the magnetic fields used in this study did not increase the incidence of major malformations or resorptions in Wistar rats. The increased number of skeletal anomalies and implantations we observed indicates, however, that some developmental effects in rats may attend exposure to time-varying magnetic fields. © 1993 Wiley-Liss. Inc.  相似文献   

12.
    
A simple, paradigmatic, model is used to illustrate some general properties of effects subsumed under the label “stochastic resonance.” In particular, analyses of the transparent model show that 1) a small amount of noise added to a much larger signal can greatly increase the response to the signal, but 2) a weak signal added to much larger noise will not generate a substantial added response. The conclusions drawn from the model illustrate the general result that stochastic resonance effects do not provide an avenue for signals that are much smaller than noise to affect biology. A further analysis demonstrates the effects of small signals in the shifting of biologically important chemical equilibria under conditions where stochastic resonance effects are significant. © 1996 Wiley-Liss, Inc.  相似文献   

13.
14.
A model has been developed that permits assessment of residential exposure to 60-Hz magnetic fields emitted by appliances. It is based on volume- and time-averaging of magnetic-dipole fields. The model enables the contribution of appliances in the total residential exposure to be compared with that of other sources in any residence under study. Calculations based on measurements reported in the literature on 98 appliances revealed that appliances are not a significant source of whole-body exposure, but that they may be the dominant source of exposure of the body's extremities.  相似文献   

15.
It has been reported that human subjects exposed to electromagnetic fields exhibit changes in human EEG signals at the frequency of stimulation. The aim of the present study was to expose different parts of the brain to extremely low-frequency magnetic fields locally and investigate EEG power spectrum alters at the frequency of stimulation. EEG relative power spectrum were evaluated at 3, 5, 10, 17, and 45 Hz frequencies at T4, T3, F3, Cz, and F4 points, respectively, when these points were exposed to magnetic fields with similar frequencies and 100 μT intensity. The paired t-test results showed that power value of EEG did not alter significantly at the frequency of stimulation (P < 0.05). Further, significant changes in different EEG bands caused by locally exposing to ELF-MF in different points of brain were observed. The changes in the EEG bands were not limited necessarily to the exposure point.  相似文献   

16.
The possibility of an association of early pregnancy loss (EPL) with residential exposure to ELF magnetic fields was investigated in a case-control study. Eighty-nine cases and 102 controls were obtained from the data of an earlier study aimed at investigating the occurrence of EPL in a group of women attempting to get pregnant. Magnetic-field exposure was characterized by measurements in residences. Strong magnetic fields were measured more often in case than in control residences. In an analysis based on fields measured at the front door, a cutoff score of 0.5 A/m (0.63 μT) resulted in an odds ratio of 5.1 (95% confidence interval 1.0–25). The results should be interpreted cautiously due to the small number of highly exposed subjects and other limitations of the data. © 1993 Wiley-Liss. Inc.  相似文献   

17.
This study explores the physiological correlates of a highly practiced Kundalini Yoga meditator. Thoracic and abdominal breathing patterns, heart rate (HR), occipital parietal electroencephalograph (EEG), skin conductance level (SCL), and blood volume pulse (BVP) were monitored during prebaseline, meditation, and postbaseline periods. Visual analyses of the data showed a decrease in respiration rate during the meditation from a mean of 11 breaths/min for the pre- and 13 breaths/min for the postbaseline to a mean of 5 breaths/min during the meditation, with a predominance of abdominal/diaphragmatic breathing. There was also more alpha EEG activity during the meditation (M = 1.71 V) compared to the pre- (M = .47 V) and postbaseline (M = .78 V) periods, and an increase in theta EEG activity immediately following the meditation (M = .62 V) compared to the pre-baseline and meditative periods (each with M = .26 V). These findings suggest that a shift in breathing patterns may contribute to the development of alpha EEG, and those patterns need to be investigated further.  相似文献   

18.
Potential effects of extremely low frequency (ELF) electromagnetic fields on periphyton were studied from 1983 to 1993 using a Before, After, Control and Impact design. The study was conducted at two sites on the Ford River, a fourth-order brown water trout stream in Dickinson County, Michigan. The Reference site received 4.9–6.5 times less exposure to ground electric fields and from 300 to 334 times less exposure to magnetic flux from 1989 to 1993 when the antenna was operational at 76 Hz than did the Antenna site. The objective of the study was to determine if ELF electromagnetic fields had caused changes in structure and/or function of algal communities in the Ford River. Significant differences in chlorophyll a standing crop and daily accumulation rate (a surrogate for primary productivity), and organic matter standing crop and daily accumulation rate were observed between the Reference and Antenna site after the antenna became operational. These four related community function variables all increased at the Antenna site with largest and most consistent increases occurring for chlorophyll measures. Compared to pre-operational data, the increase in chlorophyll at the Antenna site also occurred during a period of low amperage testing in 1986–1988, and did not increase further when the antenna became fully operational in 1989, indicating a low threshold for response. There was no significant differences between the Antenna and Reference sites in community structure variables such as diversity, evenness and the relative abundance of dominant diatoms. Thus, 76 Hz ELF electromagnetic radiation apparently did not change the basic makeup of the diatom community but did increase accumulation rates and standing crops of chlorophyll a and organic matter.  相似文献   

19.
Brain’s alpha activity and alpha responses belong to major electrical signals that are related to sensory/cognitive signal processing. The present study aims to analyze the spontaneous alpha activity and visual evoked alpha response in drug free euthymic bipolar patients. Eighteen DSM-IV euthymic bipolar patients (bipolar I n = 15, bipolar II n = 3) and 18 healthy controls were enrolled in the study. Patients needed to be euthymic at least for 4 weeks and psychotrop free for at least 2 weeks. Spontaneous EEG (4 min eyes closed, 4 min eyes open) and evoked alpha response upon application of simple visual stimuli were analyzed. EEG was recorded at 30 positions. The digital FFT-based power spectrum analysis was performed for spontaneous eyes closed and eyes open conditions and the response power spectrum was also analyzed for simple visual stimuli. In the analysis of spontaneous EEG, the ANOVA on alpha responses revealed significant results for groups (F(1,34) = 8.703; P < 0.007). Post-hoc comparisons showed that spontaneous EEG alpha power of healthy subjects was significantly higher than the spontaneous EEG alpha power of euthymic patients. Furthermore, visual evoked alpha power of healthy subjects was significantly higher than visual evoked alpha power of euthymic patients (F(1,34) = 4.981; P < 0.04). Decreased alpha activity in spontaneous EEG is an important pathological EEG finding in euthymic bipolar patients. Together with an evident decrease in evoked alpha responses, the findings may lead to a new pathway in search of biological correlates of cognitive impairment in bipolar disorder.  相似文献   

20.
Alpha/theta (a/t) neurofeedback training has in the past successfully been used as a complementary therapeutic relaxation technique in the treatment of alcoholism. In spite of positive clinical outcomes, doubts have been cast on the protocol's specificity when compared to alternative relaxation regimes. This study investigated the basic tenet underlying the a/t training rationale, that accurate a/t feedback representation facilitates the generation of these frequency components. Two groups of healthy volunteers were randomly assigned to either (a) real contingent a/t feedback training or (b) a noncontingent mock feedback control condition. The groups were compared on measures of theta/alpha (t/a) ratios within and across training sessions, as well as activational self-report scales after each session. The contingent a/t feedback group displayed significant within-session t/a ratio increments not evident in the mock control group, as well as higher overall t/a ratios in some but not all of the training sessions. No differences were found between the groups in terms of subjective activational phenomenology, in that both groups reported significantly lower levels of activation after training sessions. The data demonstrate that irrespective of considerations of clinical relevance, accurate a/t neurofeedback effectively facilitates production of higher within-session t/a ratios than do noncontingent feedback relaxation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号