首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Evidence is presented for the identification of the chlorophyll- protein complex CPa-1 (CP 47) as the reaction centre of photosystem II (PS II). We have developed a simple, rapid method using octyl glucoside solubilization to obtain preparations from spinach and barley that are highly enriched in PS II reaction centre activity (measured as the light-driven reduction of diphenylcarbazide by 2,6-dichlorophenolindophenol). These preparations contain only the two minor chlorophyll-protein complexes CPa-1 and CPa-2. During centrifugation on a sucrose density gradient, there is a partial separation of the two CPa complexes from each other, and a complete separation from other chlorophyll-protein complexes. The PS II activity comigrates with CPa-1 but not CPa-2, strongly suggesting that the former is the reaction centre complex of PS II. Reaction centre preparations are sensitive to the herbicide 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), but only at much higher concentrations than those required to inhibit intact thylakoid membranes. A model of PS II incorporating our current knowledge of the chlorophyll-protein complexes is presented. It is proposed that CPa-2 and the chlorophyll a + b complex CP 29 may function as internal antenna complexes surrounding the reaction centre, with the addition of variable amounts of the major chlorophyll a + b light-harvesting complex.  相似文献   

2.
Routinely prepared PS II core samples are often contaminated by a significant (~ 1–5%) fraction of PS I, as well as related proteins. This contamination is of little importance in many experiments, but masks the optical behaviour of the deep red state in PS II, which absorbs in the same spectral range (700–730 nm) as PS I (Hughes et al. 2006). When contamination levels are less than ~ 1%, it becomes difficult to quantify the PS I related components by gel-based, chromatographic, circular dichroism or EPR techniques. We have developed a fluorescence-based technique, taking advantage of the distinctively different low-temperature emission characteristics of PS II and PS I when excited near 700 nm. The approach has the advantage of providing the relative concentration of the two photosystems in a single spectral measurement. A sensitivity limit of 0.01% PS I (or better) can be achieved. The procedure is applied to PS II core preparations from spinach and Thermosynechococcus vulcanus. Measurements made of T. vulcanus PS II preparations prepared by re-dissolving crystallised material indicate a low but measurable PS I related content. The analysis provides strong evidence for a previously unreported fluorescence of PS II cores peaking near 780 nm. The excitation dependence of this emission as well as its appearance in both low PS I cyanobacterial and plant based PS II core preparations suggests its association with the deep red state of PS II.  相似文献   

3.
Phytochelatins, heavy-metal-containing peptides with structures (gamma EC)nG, where n = 2-8, have been isolated from higher plants and the fission yeast Schizosaccharomyces pombe. The present work describes the isolation and characterization of several naturally occurring mixed complexes of these peptides from S. pombe exposed to 1 mM CdCl2. A lower-molecular-mass fraction from Sephadex G-50 chromatography yielded three distinct species on further fractionation. HPLC chromatography revealed the presence of peptides with n = 1-4 in varying amounts in these three complexes, referred to as complexes I, II and III. Stoichiometries are proposed for these complexes, based on [Cd], [SH], [S2-] and the amino acid content. Ultraviolet absorption and magnetic circular dichroism spectra of complexes II and III are similar, whereas the CD spectra of these two complexes are strikingly different. Compared to both complexes II and III, the CD bands of complex I are relatively weak. Ultraviolet absorption, CD and magnetic circular dichroism spectra provide a basis for the discussion of structural differences in these complexes.  相似文献   

4.
Effects of photoinhibition at 0 °C on the PS II acceptor side have been analyzed by comparative studies in isolated thylakoids, PS II membrane fragments and PS II core complexes from spinach under conditions where degradation of polypeptide(s) D1(D2) is highly retarded. The following results were obtained by measurements of the transient fluorescence quantum and oxygen yield, respectively, induced by a train of short flashes in dark-adapted samples: (a) in the control the decay of the fluorescence quantum yield is very rapid after the first flash, if the dark incubation was performed in the presence of 300 M K3[Fe(CN)6]; whereas, a characteristic binary oscillation was observed in the presence of 100 M phenyl-p-benzoquinone with a very fast relaxation after the even flashes (2nd, 4th. . . ) of the sequence; (b) illumination of the samples in the presence of K3[Fe(CN)6] for only 5 min with white light (180 W m-2) largely eliminates the very fast fluorescence decay after the first flash due to QA - reoxidation by preoxidized endogenous non-heme Fe3+, while a smaller effect arises on the relaxation kinetics of the fluorescence transients induced by the subsequent flashes; (c) the extent of the normalized variable fluorescence due to the second (and subsequent) flash(es) declines in all sample types with a biphasic time dependence at longer illumination. The decay times of the fast (6–9 min) and the slow degradation component (60–75 min) are practically independent of the absence or presence of K3[Fe(CN)6] and of anaerobic and aerobic conditions during the photo-inhibitory treatment, while the relative extent of the fast decay component is higher under anaerobic conditions. (d) The relaxation kinetics of the variable fluorescence induced by the second (and subsequent) flash(es) become retarded due to photoinhibition, and (e) the oscillation pattern of the oxygen yield caused by a flash train is not drastically changed due to photoinhibition.Based on these findings, it is concluded that photoinhibition modifies the reaction pattern of the PS II acceptor side prior to protein degradation. The endogenous high spin Fe2+ located between QA and QB is shown to become highly susceptible to modification by photoinhibition in the presence of K3[Fe(CN)6] (and other exogenous acceptors), while the rate constant of QA - reoxidation by QB(QB -) and other acceptors (except the special reaction via Fe3+) is markedly less affected by a short photoinhibition. The equilibrium constant between QA - and QB(QB -) is not drastically changed as reflected by the damping parameters of the oscillation pattern of oxygen evolution.  相似文献   

5.
The triplet states in plant photosystem II (PS II), 3P680, and from chlorophyll a, 3Chl a, in organic solution have been investigated using pulse ENDOR combined with repetitive laser excitation at cryogenic temperature with the aim to obtain their hyperfine (hf) structure. The large zero field splitting (ZFS) tensor of 3P680 enabled orientation selection via the electron spin resonance (EPR) field setting along the ZFS tensor axes. ENDOR spectra have been obtained for the first time also for the in-plane X- and Y-orientations of the ZFS tensor. This allowed a full determination of the hf-tensors of the three methine protons and one methyl group of 3P680. Based on the orientations of the axes of these hf-tensors, a unique orientation of the axes of the ZFS tensor of 3P680 in the Chl a molecular frame was obtained. These data serve as a structural basis for determining the orientation of 3P680 in the PS II protein complex by EPR on single crystals (see M. Kammel et al. in this issue). The data obtained represent the first complete set of the larger hf-tensors of the triplet state 3P680. They reflect the spin density distribution both in the highest occupied (HOMO) and lowest unoccupied (LUMO) orbitals. The data clearly confirm that 3P680 is a monomeric Chl a species at low temperature (T=10 K) used, as has been proposed earlier based on D- and E-values obtained from EPR and optically detected magnetic resonance (ODMR) studies. Comparison with the hf data for the cation and anion radicals of Chl a indicates a redistribution of spin densities in particular for the LUMO orbital of the triplet states. The electron spin distribution in the LUMO orbital is of special interest since it harbours the excited electron in the excited P680 singlet state, from which light-induced electron transfer proceeds. Observed shifts of hf couplings from individual nuclei of 3P680 as compared with 3Chl a in organic solution are of special interest, since they indicate specific protein interactions, e.g. hydrogen bonding, which might be used in future studies for assigning 3P680 to a particular chlorophyll molecule in PS II.  相似文献   

6.
《FEBS letters》1987,220(1):67-73
A photosystem II reaction centre has been isolated from peas and found to consist of D1, D2 polypeptides and the apoproteins of cytochrome b-559, being similar to that reported for spinach by Nanba and Satoh [(1987) Proc. Natl. Acad. Sci. USA 84, 109–112]. The complex binds chlorophyll a, pheophytin and the haem of cytochrome b-559 in an approximate ratio of 4:2:1 and also contains about one molecule of β-carotene. It binds no plastoquinone-9 or manganese but does contain at least one non-haem iron. In addition to a light-induced signal due to Pheo seen under reducing conditions, a light-induced P680+ signal is seen when the reaction centre is incubated with silicomolybdate. In the presence of diphenylcarbazide, the P680+ signal is partially inhibited and net electron flow to silicomolybdate occurs. This net electron flow is insensitive to o-phenanthroline, 3-(3,4-dichlorophenyl)-1,1-dimethyl urea and 2-(3-chloro-4-trifluoromethyl)anilino-3,5-dinitrothiophene but is inhibited by proteolysis with trypsin and by other treatments. Fluorescence, from the complex, peaks at 682 nm at room temperature and at 685 nm at 77 K. This emission is significantly quenched when either the P680+Pheo or P680Pheo states are established indicating that the fluorescence emanates from the back reaction between P680+ and Pheo.  相似文献   

7.
8.
Addition of high concentrations of compatible co-solutes such as sugars, sugar alcohols and polyols has recently been shown to lead to marked increases in the thermal stability of oxygen-evolution in chloroplasts (Williams et al. (1992) Biochim. Biophys. Acta 1099, 137-144). In this paper, a similar stabilisation is demonstrated for oxygen-evolving PS II core preparations. The presence of such co-solutes appears, however, to have no ability to stabilise PS II reaction-centre preparations against heat-induced changes in their absorption spectrum. Nor do they protect electron transport from artificial electron donors in PS II core preparations lacking the extrinsic 33 kDa polypeptide of the oxygen-evolution system. Measurements performed on core preparations retaining the 33 kDa polypeptide but lacking the 17 kDa and 23 kDa polypeptides indicate that the co-solutes protect PS-II-mediated electron transport by stabilising the binding of the 33 kDa polypeptide to the core complexes. These findings are discussed in terms of an extension of the general principles underlying the Hofmeister effect observed for soluble proteins to the stabilisation of photosynthetic membrane preparations.  相似文献   

9.
10.
Intensity of 2 s delayed fluorescence (DF) as a function of steady-state actinic light intensity was investigated in pea chloroplasts in the presence of 10 M DCMU. The light saturation curve of DF was approximated by a sum of two hyperbolic components which differ by an order of magnitude in the half-saturating incident light intensity. The relative contribution of the amplitudes of the components was practically independent of cation (Na+ and Mg2+) concentration and a short-term heating of the chloroplasts at 45°C. The component saturating at low incident light intensity was selectively suppressed by 100 M DCMU or by 1 mol g-1 Chl oleic acid. DF intensity following excitation by a single saturating 15 s flash was equal to the intensity of the component saturating at a low incident light intensity. Upon flash excitation, the maximum steady-state DF level was found to be attained only after a series of saturating flashes. It is concluded that the two components of the DF light saturation curves are related to PS II centres heterogeneity in quantum yield of stabilization of the reduced primary quinone acceptor.Abbreviations DF Delayed fluorescence - L1- and L2-components DF components saturating at low and high incident light intensity, respectively - I incident light intensity - L DF intensity - P680 reaction centre chlorophyll of PS II - QA and QB primary and secondary quinone acceptors of PS II, respectively  相似文献   

11.
In an attempt to mimic the iron–quinone couple of bacterial reaction center, spectral, magnetic and Mössbauer characterization of seven high-spin iron(II) complexes of the ortho-functionalized paraquinones is reported where the quinones are coordinated in their fully oxidized, monoanionic form.  相似文献   

12.
Absorbance difference spectra associated with the light-induced formation of functional states in photosystem II core complexes from Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 (e.g., ) are described quantitatively in the framework of exciton theory. In addition, effects are analyzed of site-directed mutations of D1-His198, the axial ligand of the special-pair chlorophyll PD1, and D1-Thr179, an amino-acid residue nearest to the accessory chlorophyll ChlD1, on the spectral properties of the reaction center pigments. Using pigment transition energies (site energies) determined previously from independent experiments on D1-D2-cytb559 complexes, good agreement between calculated and experimental spectra is obtained. The only difference in site energies of the reaction center pigments in D1-D2-cytb559 and photosystem II core complexes concerns ChlD1. Compared to isolated reaction centers, the site energy of ChlD1 is red-shifted by 4 nm and less inhomogeneously distributed in core complexes. The site energies cause primary electron transfer at cryogenic temperatures to be initiated by an excited state that is strongly localized on ChlD1 rather than from a delocalized state as assumed in the previously described multimer model. This result is consistent with earlier experimental data on special-pair mutants and with our previous calculations on D1-D2-cytb559 complexes. The calculations show that at 5 K the lowest excited state of the reaction center is lower by ∼10 nm than the low-energy exciton state of the two special-pair chlorophylls PD1 and PD2 which form an excitonic dimer. The experimental temperature dependence of the wild-type difference spectra can only be understood in this model if temperature-dependent site energies are assumed for ChlD1 and PD1, reducing the above energy gap from 10 to 6 nm upon increasing the temperature from 5 to 300 K. At physiological temperature, there are considerable contributions from all pigments to the equilibrated excited state P*. The contribution of ChlD1 is twice that of PD1 at ambient temperature, making it likely that the primary charge separation will be initiated by ChlD1 under these conditions. The calculations of absorbance difference spectra provide independent evidence that after primary electron transfer the hole stabilizes at PD1, and that the physiologically dangerous charge recombination triplets, which may form under light stress, equilibrate between ChlD1 and PD1.  相似文献   

13.
14.
The energy equilibration and transfer processes in the isolated core antenna complexes CP43 and CP47 of photosystem II have been studied by steady-state and ultrafast (femto- to nanosecond) time-resolved spectroscopy at room temperature. The annihilation-free femtosecond absorption data can be described by surprisingly simple sequential kinetic models, in which the excitation energy transfer between blue and red states in both antenna complexes is dominated by sub-picosecond processes and is completed in less than 2 ps. The slowest energy transfer steps with lifetimes in the range of 1-2 ps are assigned to transfer steps between the chlorophyll layers located on the stromal and lumenal sides. We conclude that these ultrafast intra-antenna energy transfer steps do not represent a bottleneck in the rate of the primary processes in intact photosystem II. Since the experimental energy equilibration rates are up to a factor of 3-5 higher than concluded previously, our results challenge the conclusions drawn from theoretical modeling.  相似文献   

15.
Photosystem II oxygen-evolving preparations exhibited a reversible loss of signal IIs hyperfine structure when treated with 1.0 M CaCl2. A progressive irreversible loss of hyperfine structure was observed upon trypsin treatment of these preparations. These treatments appear to alter the environment of the radical responsible for signal IIs. Gel electrophoresis of trypsin-treated photosystem II preparations indicates that three polypeptides (45, 32-34, and 26 kDa) are altered with the same kinetics as observed for the trypsin-induced loss of signal IIs. Two of these polypeptides (45 and 32-34 kDa) are core components of photosystem II.  相似文献   

16.
《FEBS letters》1986,205(2):275-281
EPR signals in the high-spin region were studied at 10 K in photosystem II (PS II) particles and in a purified oxygen-evolving PS II reaction center complex under oxidizing conditions. PS II particles showed EPR peaks at g = 8.0 and 5.6, confirming the recent report by Petrouleas and Diner [(1986) Biochim. Biophys. Acta 849, 264-275]. Addition of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or o-phenanthroline shifted the peaks to be closer to g = 6.0 depending on the medium pH. On the other hand, the PS II reaction center complex showed peaks at g = 6.1 and 7.8, and at g = 6.1 and 6.4, in the absence and presence of o-phenanthroline, respectively. All these peaks were found to be decreased by the illumination at 10 K. These results suggest that the high-spin signals are due to Q400, Fe(III) atom interacting with the PS II primary electron acceptor quinone QA as reported and that the Fe atom also interacts with the secondary acceptor quinone QB. This interaction seems to induce the highly asymmetric ligand coordination of the Fe atom and to be affected by DCMU and o-phenanthroline in a somewhat different manner.  相似文献   

17.
18.
Contemporary studies of isolated hearts from hibernators and nonhibernators are presented. Original experiments with isolated perfused hamster hearts are reported. Such hearts can maintain left ventricular function at temperatures as low as 7 °C. Generated left ventricular pressure was 40 ± 9 mm Hg and heart rate was 7 ± 1 beats/min. During cooling heart rate dropped dramatically, coronary flow increased, and ventricular pressure decreased initially, plateaued, and then fell as 7 °C was approached. Norepinephrine can cause increased heart rate and left ventricular pressure at 22 and 7 °C. This positive inotropic and chronotropic response was associated with increased cAMP at 30 sec after stimulation at 22 °C but not at 7 °C. Furthermore. cAMP was also not changed at peak response at 7 °C. Isoproterenol increased cAMP content in 37 °C ventricular slices but not at hypothermic temperatures. Possible mechanisms of nonadenylate cyclase mediation of inotropic and chronotropic responses at 7 °C are discussed.  相似文献   

19.
20.
The binding of the herbicide atrazine to thylakoid membranes is often used to quantify Photosystem II reaction centres. Two atrazine binding sites, with high and low affinities, have been observed on the D1 and D2 polypeptides of Photosystem II, respectively (McCarthy S., Jursinic P. and Stemler A. (1988) Plant Physiol. 86S:46). We have observed that the accessibility of the low-affinity binding sites is variable, being limited in freshly isolated thylakoids or in fresh frozen-thawed thylakoids, but increasing during storage of the membranes on ice. In contrast, the accessibility of the high-affinity binding sites, which are titratable at low concentrations (< 500 nM) of herbicide, is much less variable, although the dissociation constant is greatly influenced by ethanol. We conclude that to quantify Photosystem II reaction centres by atrazine binding, it is sufficient and more reliable to assay only the high-affinity binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号