首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the imaginal tissue of developing fruit flies, achaete (ac) and scute (sc) expression defines a group of neurally-competent cells called the proneural cluster (PNC). From the PNC, a single cell, the sensory organ precursor (SOP), is selected as the adult mechanosensory organ precursor. The SOP expresses high levels of ac and sc and sends a strong Delta (Dl) signal, which activates the Notch (N) receptor in neighboring cells, preventing them from also adopting a neural fate. Previous work has determined how ac and sc expression in the PNC and SOP is regulated, but less is known about SOP-specific factors that promote SOP fate. Here, we describe the role of nervy (nvy), the Drosophila homolog of the mammalian proto-oncogene ETO, in mechanosensory organ formation. Nvy is specifically expressed in the SOP, where it interacts with the Ac and Sc DNA binding partner Daughterless (Da) and affects the expression of Ac and Sc targets. nvy loss- and gain-of-function experiments suggest that nvy reinforces, but is not absolutely required for, the SOP fate. We propose a model in which nvy acts downstream of ac and sc to promote the SOP fate by transiently strengthening the Dl signal emanating from the SOP.  相似文献   

3.
4.
5.
6.
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. The positions of bristles correlate with differences in the spatial expression of the scute (sc) gene in those species examined so far. However, a major upstream activator of scute, Pannier (Pnr), is expressed in a conserved domain over the entire medial notum. Here we examine the expression patterns in Calliphora vicina of stripe (sr), u-shaped (ush), caupolican (caup) and wingless (wg), genes known to modify the activity of Pnr or to act downstream of Pnr in Drosophila. We find that, with minor differences, their expression patterns are conserved. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera and that many differences are likely to be due to changes in cis-regulatory sequences of scute.  相似文献   

7.
8.
9.
The Drosophila adult cuticle displays a stereotyped pattern of sensory organs (SOs). Its deployment requires the expression of the achaete (ac) and scute (sc) genes. Their products confer to cells of epidermal primordia (imaginal discs and histoblasts) the ability to become SO precursors (SOPs). In imaginal discs, ac and sc expression is spatially restricted to cell clusters within which one or a few cells become SOP(s). With the help of ubiquitous sc expression provided at different developmental times by a heat shock-sc (HSSC) chimeric gene, we have analyzed the response of epidermal primordia to the proneural action of the sc product, and have tested whether the patterned distribution of ac/sc products is necessary to position SOs correctly within the epidermis. Each primordium responds to HSSC expression by developing SOs only during a characteristic developmental period. In the absence of the endogenous ac and sc genes, most SOs induced by HSSC are of the correct type and are located in wild type positions. These results indicate that the capacity of primordia to respond to sc is temporally and spatially regulated, that specification of the type of SO does not depend on ac/sc, and that SO positioning utilizes topological information independent of the spatially restricted distribution of ac/sc products.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Transgenic rice to control stem borer damage is under development in China. To assess the potential of Bacillus thuringiensis (Bt) transgenes in stem borer control, the toxicity of five Bt protoxins (Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1Ca) against two rice stem borers, Sesamia inferens (pink stem borer) and Chilo suppressalis (striped stem borer), was evaluated in the laboratory by feeding neonate larvae on artificial diets containing Bt protoxins. The results indicated that Cry1Ca exhibited the highest level of toxicity to both stem borers, with an LC50 of 0.24 and 0.30 μg/g for C. suppressalis and S. inferens, respectively. However, S. inferens was 4-fold lower in susceptibility to Cry1Aa, and 6- and 47-fold less susceptible to Cry1Ab and Cry1Ba, respectively, compared to C. suppressalis. To evaluate interactions among Bt protoxins in stem borer larvae, toxicity assays were performed with mixtures of Cry1Aa/Cry1Ab, Cry1Aa/Cry1Ca, Cry1Ac/Cry1Ca, Cry1Ac/Cry1Ba, Cry1Ab/Cry1Ac, Cry1Ab/Cry1Ba, and Cry1Ab/Cry1Ca at 1:1 (w/w) ratios. All protoxin mixtures demonstrated significant synergistic toxicity activity against C. suppressalis, with values of 1.6- to 11-fold higher toxicity than the theoretical additive effect. Surprisingly, all but one of the Bt protoxin mixtures were antagonistic in toxicity to S. inferens. In mortality-time response experiments, S. inferens demonstrated increased tolerance to Cry1Ab and Cry1Ac compared to C. suppressalis when treated with low or high protoxin concentrations. The data indicate the utility of Cry1Ca protoxin and a Cry1Ac/Cry1Ca mixture to control both stem borer populations.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号