首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
为了探究NAC转录因子家族成员在胡杨(Populus euphratica)逆境胁迫中的响应和调控机制,利用PCR技术从胡杨中克隆了PeNAC121基因的启动子序列,并采用生物信息学工具对该启动子的结构特征进行了分析,最后利用该启动子驱动GUS报告基因在三倍体毛白杨(Populus tomentosa)中表达,并对获得的转基因植株采用不同胁迫处理后进行了GUS染色和酶活性定量分析。结果表明,克隆获得的PeNAC121基因的启动子长度为1 997 bp(起始密码子ATG上游),启动序列中除了含有大量的光响应元件,还含有多个与非生物逆境胁迫和激素响应相关的元件,如低温响应元件LTR、干旱响应元件MBS、防卫和胁迫响应元件TC-rich repeats、脱落酸(ABA)响应元件、以及赤霉素(GA)响应元件等。基因的组织表达模式检测结果显示,PeNAC121基因主要在茎中表达,在根和叶中的表达较少。GUS组织化学染色和酶活性检测结果表明,胡杨PeNAC121启动子显著受到NaCl、甘露醇、ABA和4 ℃低温的诱导表达。由上述结果推测PeNAC121基因与胡杨的逆境胁迫应答密切相关,表明该基因的启动子是一个能够应答多种逆境胁迫的诱导型启动子。本研究为阐明PeNAC121基因在胡杨逆境响应和调控中的作用机制提供理论参考。  相似文献   

4.
5.
6.
T D Sutliff  M B Lanahan    T H Ho 《The Plant cell》1993,5(11):1681-1692
The promoters of a majority of cereal alpha-amylase genes contain three highly conserved sequences (gibberellin response element, box I, and pyrimidine box). Recent studies have demonstrated the functional importance of four regions that either coincide with or are immediately proximal to these three conserved elements as well as an upstream Opaque-2 binding sequence. In this study, we describe the characterization of nuclear protein factors from barley aleurone layers whose binding activity toward gibberellin response complex sequences from the barley low-pl alpha-amylase gene (Amy32b) promoter is stimulated by gibberellin A3 (GA3) treatment. Barley proteins isolated from crude nuclear extracts prepared from aleurone layers incubated with or without GA3 were fractionated by anion exchange fast protein liquid chromatography and studied using band shift assays, sequence-specific competitions, and DNase I footprinting. A GA3-dependent binding activity eluting at 210 mM KCl was shown to bind specifically to the gibberellin response element and the closely associated box I. DNase I footprinting with the proteins in this fraction indicated interactions with sequences in the gibberellin response element and box I. A second DNA binding activity eluting at 310 mM KCl was present constitutively in extracts prepared from tissues incubated both in the absence and in the presence of hormone. Proteins in this fraction were able to bind to many DNA sequences and, in general, were largely nonspecific. DNase I footprinting with the proteins in this fraction indicated a large area of protection with a single unoccupied region located at the 3' end of box I. The possible function of such an activity in hormone regulation of the alpha-amylase genes is discussed.  相似文献   

7.
8.
9.
10.
F Gubler  J V Jacobsen 《The Plant cell》1992,4(11):1435-1441
Deletion analysis has previously shown that the major gibberellic acid (GA)- and abscisic acid (ABA)-responsive elements in the promoter of a high-pI alpha-amylase gene of barley are located downstream of -174 (Jacobsen and Close, 1991). We have used transient expression assays in barley aleurone protoplasts to identify sequences between -174 and +53 that confer GA and ABA responsiveness on expression of a beta-glucuronidase reporter gene. Using alpha-amylase promoter fragments and synthetic oligonucleotides fused to minimal promoters, we have shown that the hormone-responsive region is located between -174 and -108. A single copy of this region fused to a minimal alpha-amylase promoter (-41) conferred both GA- and ABA-responsive expression on the reporter gene comparable to the positive control, Am(-174)IGN. Multiple copies of this region were able to activate even greater levels of expression. Site-directed mutagenesis was used to determine the functional importance of the conserved motifs (-169pyrimidine box, -143TAACAAA box, and -124TATCCAC box) and nonconserved intervening sequences within the region between -174 and -108. Our results showed that both the TAACAAA and TATCCAC boxes play an important role in GA-regulated expression. We propose that the TAACAAA box is a gibberellin response element, that the TATCCAC box acts cooperatively with the TAACAAA box to give a high level of GA-regulated expression, and that together these motifs form important components of a gibberellin response complex in high-pI alpha-amylase genes. The TAACAAA box also appears to be the site of action of ABA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
13.
The bifunctional alpha-amylase/subtilisin inhibitor (BASI) is an abundant protein in barley seeds, proposed to play multiple and apparently diverse roles in regulation of starch hydrolysis and in seed defence against pathogens. In the Triticeae, the protein has evolved the ability to specifically inhibit the main group of alpha-amylases expressed during germination of barley and encoded by the amyl gene family found only in the Triticeae. The expression of the asi gene that encodes BASI has been reported to be controlled by the hormones abscisic acid (ABA) and gibberellic acid (GA). Despite many studies at the gene and protein level, the function of this gene in the plant remains unclear. In this study, the 5'-flanking region (1033 bp, 1033-asi promoter) and the 3'-flanking region (655 bp) of the asi gene were isolated and characterised. The 1033-asi promoter sequence showed homology to a number of ciselements that play a role in ABA and GA regulated expression of other genes. With a green fluorescent protein gene (gfp) as reporter, the 1033-asi promoter was studied for spatial, temporal and hormonal control of gene expression. The 1033-asi promoter and its deletions direct transient gfp expression in the pericarp and at low levels in mature aleurone cells, and this expression is not regulated by ABA or GA. In transgenic barley plants, the 1033-asi promoter directed tissue-specific expression of the gfp gene in developing grain and germinating grain but not in roots or leaves. In developing grain, expression of gfp was observed specifically in the pericarp, the vascular tissue, the nucellar projection cells and the endosperm transfer cells and the hormones ABA or GA did not regulate this expression. In mature germinating grain gfp expression was observed in the embryo but not in aleurone or starchy endosperm. However, GA induced gfp expression in the aleurone of mature imbibed seeds from which the embryo had been removed. Expression in maternal rather than endosperm tissues of the grain suggests that earlier widespread assumptions that the protein is expressed largely in the endosperm may have been largely based on analysis of mixed grain tissues. This novel pattern of expression suggests that both activities of the protein may be primarily involved in seed defence in the peripheral tissues of the seed.  相似文献   

14.
15.
16.
A barley SPINDLY protein, HvSPY, is a negative regulator of gibberellin (GA) action. It is also found to be a positive regulator of the promoter of a barley dehydrin (Dhn) gene which is abscisic acid (ABA) upregulated. To investigate whether HvSPY acts through the ABA signaling pathway to upregulate the Dhn promoter, functional characterization was carried out by co-bombardment experiments. These experiments used Dhn promoter-GUS reporter constructs and an effector construct to overexpress HvSPY protein in barley aleurone. ABA dose-response experiments with and without HvSPY overexpression showed that the induction by HvSPY occurred in addition to the ABA effect. Gibberellic acid (GA3) did not reduce the induction by ABA, but it had a small, although significant, effect on the ability of HvSPY to upregulate. The induction of promoter activity of Dhn by HvSPY required the intact protein, and a small deletion in the tetratricopeptide repeat (TPR) region reduced this ability significantly. When a promoter region containing an element for ABA responsiveness was mutagenized or deleted, the mutant promoters lost ABA responsiveness but remained responsive to HvSPY. In addition, HvSPY did not increase promoter activities of other ABA-upregulated genes. Taken together, these results indicate that HvSPY and ABA both regulate promoter activity of Dhn, and that HvSPY acts independently of the ABA signaling pathway.  相似文献   

17.
18.
The slender rice (slr1-1) mutant, carrying a lethal and recessive single mutation, has a constitutive gibberellin (GA)-response phenotype and behaves as if it were saturated with GAs [Ikeda et al. (2001) Plant Cell 13, 999]. The SLR1 gene, with sequence homology to members of the plant-specific GRAS gene family, is a mediator of the GA signal transduction process. In the slender rice, GA-inducible alpha-amylase was produced from the aleurone layer without applying GA. GA-independent alpha-amylase production in the mutant was inhibited by applying abscisic acid (ABA). Shoot elongation in the mutant was also suppressed by ABA, indicating that the slender rice responds normally to ABA. Interestingly, shoot ABA content was 10-fold higher in the mutant than in the wild type, while there was no difference in root ABA content. Expression of the Rab16A gene, which is known to be ABA inducible, was about 10-fold higher in shoots of the mutant than in those of the wild type. These results indicate that constitutive activation of the GA signal transduction pathway by the slr1-1 mutation promotes the endogenous ABA level.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号