首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The performance and the granules characteristics of a 450 m(3) -UASB reactor operating for 1228 days, treating poultry slaughterhouse wastewater with an average COD reduction of 85% was examined. Granules were sampled in three different positions along the vertical central line of the reactor, revealing variations in the concentration of volatile total solids. Although the reactor had been in operation for an extended period of time, granule sizes of 0.5-1.5 mm appeared to predominate. The hollow core was well defined for granules with sizes ranging from 2 to 3 mm in all the sampling ports. The granules exhibited no layered microbial distribution and were packed with different morphotype cells intertwined randomly throughout the cross-section. Methanogenic Archaea predominated in the granules taken from every sampling port along the reactor. The results indicated that the characterization of the granules is a useful tool for the adoption of operational strategies toward optimization of UASB reactors.  相似文献   

2.
In this study, the performance of 5.4 L hybrid upflow anaerobic sludge blanket (HUASB) reactor for treating poultry slaughterhouse wastewater under mesophilic conditions (29-35 °C), was investigated. After starting-up, the reactor was loaded up to an OLR of 19 kg COD/m3 d and achieved varied TCOD and SCOD removal efficiencies of 70-86% and 80-92%, respectively. The biogas was varied between 1.1 and 5.2 m3/m3 d with the maximum methane content of 72%. The maximum methane yield was 0.32 m3/kg CODremoved at an OLR of 9.27 kg COD/m3 d. Black matured granules of size between 2.5 and 5 mm were observed at the end of 225 d operation. RTD study showed the flow behavior was in mixed regime at the end of performance study. Step wise polynomial regression analysis was fitted well. Methanobacterium and Methanosaeta bacteria were dominant at the end of start-up whereas Methanosarcina, Cocci and rods were predominant at the end of performance studies.  相似文献   

3.
In this study, performance of a lab-scale hybrid up-flow anaerobic sludge blanket (UASB) reactor, treating a chemical synthesis-based pharmaceutical wastewater, was evaluated under different operating conditions. This study consisted of two experimental stages: first, acclimation to the pharmaceutical wastewater and second, determination of maximum loading capacity of the hybrid UASB reactor. Initially, the carbon source in the reactor feed came entirely from glucose, applied at an organic loading rate (OLR) 1 kg COD/m(3) d. The OLR was gradually step increased to 3 kg COD/m(3) d at which point the feed to the hybrid UASB reactor was progressively modified by introducing the pharmaceutical wastewater in blends with glucose, so that the wastewater contributed approximately 10%, 30%, 70%, and ultimately, 100% of the carbon (COD) to be treated. At the acclimation OLR of 3 kg COD/m(3) d the hydraulic retention time (HRT) was 2 days. During this period of feed modification, the COD removal efficiencies of the anaerobic reactor were 99%, 96%, 91% and 85%, and specific methanogenic activities (SMA) were measured as 240, 230, 205 and 231 ml CH(4)/g TVS d, respectively. Following the acclimation period, the hybrid UASB reactor was fed with 100% (w/v) pharmaceutical wastewater up to an OLR of 9 kg COD/m(3) d in order to determine the maximum loading capacity achievable before reactor failure. At this OLR, the COD removal efficiency was 28%, and the SMA was measured as 170 ml CH(4)/g TVS d. The hybrid UASB reactor was found to be far more effective at an OLR of 8 kg COD/m(3) d with a COD removal efficiency of 72%. At this point, SMA value was 200 ml CH(4)/g TVS d. It was concluded that the hybrid UASB reactor could be a suitable alternative for the treatment of chemical synthesis-based pharmaceutical wastewater.  相似文献   

4.
Hwu CS  Lu CJ 《Biotechnology letters》2008,30(9):1589-1593
Influences of hydraulic retention time (HRT) on dechlorination of tetrachloroethene (PCE) were investigated in an upflow anaerobic sludge blanket (UASB) reactor inoculated with anaerobic granular sludge non-pre-exposed to chlorinated compounds. PCE was introduced into the reactor at a loading rate of 3 mg/l d. PCE removal increased from 51 +/- 5% to 87 +/- 3% when HRT increased from 1 to 4 d, corresponding to an increase in the PCE biotransformation rate from 10.5 +/- 2.3 to 21.3 +/- 3.7 mumol/d. A higher ethene production rate, 0.9 +/- 0.2 mumol/d, was attained without accumulation of dichloroethenes at the HRT of 4 d. Dehalococcoides-like species were detected in sludge granules by fluorescence in situ hybridization, with signal strength in proportion to the extent of PCE dechlorination.  相似文献   

5.
This paper deals with the characteristics of anaerobic microbial granules grown in an UASB reactor treating catechol bearing synthetic wastewater (SWW). The specific methanogenic activity of the sludge showed an increase in trend with an increase in the organic loading rate and the catechol concentration in the SWW. The settling velocity of individual granules in the size range of 0.5-2.5mm was found to be in the range of 30-75mh(-1). The ash content in the sludge was 11.7% with a sludge volume index of 18-20mlg(-1). The inorganic elemental distribution within the granules showed a decrease except that for phosphorous and cobalt, which increased by approximately 12% and 18%, respectively, after the treatment of SWW. Scanning electron microscopy (SEM) coupled with electron disperse X-ray analysis showed an increase in the sulphur content by approximately 300% after the treatment of SWW. Surface mineral composition of the granules determined by XRD analysis indicated the existence of vuagnatite (CaAlSiO(4)(OH)). SEM observation of the granules showed the predominance of Methanosaeta and Methanobacterium type of species on the surface along with a variety of other species.  相似文献   

6.
The discharge of textile wastewater containing dye in the environment is varying for both toxicology and esthetical reasons as dyes impede light penetration, damage the quality of the receiving streams. Upflow anaerobic sludge blanket reactor with anaerobic digester sludge treating starch wastewater has been used to investigate the removal efficiency of chemical oxygen demand (COD) and colour of textile dye wastewater. In this study, the starch and textile dye wastewater was mixed at 70 and 30%, respectively, and the experiments were carried out with recycle of treated wastewater at different percentage as 10, 20, 30 and 40. Maximum removal of COD and colour was 96% and 93.3%, respectively, at 30% recycle. At various OLR and HRT, the maximum removal of COD, colour was 95.9%, 93% at 6.81 kg COD/m3d and 96%, 93% with 24 h of HRT. The maximum production of biogas at 24 h of HRT with 30% recycle was about 355 l/d. The Volatile fatty acid/Alkalinity ratio of methanogenic reactor was found to be 0.049–0.053. The result provided evidence, the starch and dye wastewater have wide variation in their characteristics was treated on combination, this new technology supports the effective utilization of starch waste in destruction of dye.  相似文献   

7.
An upflow anaerobic sludge blanket reactor was employed to treat saline sulfate wastewater. Mesophilic operation (35 ± 0.5 °C) was performed with hydraulic retention time fixed at 16 h. When the salinity was 28 g L?1, the chemical oxygen demand and sulfate removal efficiencies were 52 and 67 %, respectively. The salinity effect on sulfate removal was less than that on organics removal. The methane productions were 887 and 329 cm3 L?1 corresponding to the NaCl concentrations of 12 and 28 g L?1, respectively. High salinity could stimulate microbes to produce more extracellular polymeric substances (EPSs) and granulation could be performed better. Besides, with the high saline surroundings, a great deal of Na+ compressed the colloidal electrical double-layer, neutralized the negative charge of the sludge particles and decreased their electrostatic repulsion. The repulsion barrier disappeared and coagulation took place. The maximum size of granules was 5 mm, which resulted from the coupled triggering forces of high EPSs and Na+ contents. Sulfate-reducing bacteria (SRB) were dominant in the high saline surroundings while the methane-producing archaea dominated in the low saline surroundings. The SRB were affected least by the salinity.  相似文献   

8.
In recent years considerable effort has been made in the Netherlands toward the development of a more sophisticated anaerobic treatment process, suitable for treating low a strength wastes and for applications at liquid detention times of 3–4 hr. The efforts have resulted in new type of upflow anaerobic sludge blanket (UASB) process, which in recent 6 m3 pilot-plant experiments has shown to be capable of handling organic space loads of 15–40 kg chemical oxygen demand (COD)·m?3/day at 3–8 hr liquid detention times. In the first 200 m3 full-scale plant of the UASB concept, organic space loadings of up to 16 kg COD·m?3/day could be treated satisfactorily at a detention times of 4 hr, using sugar beet waste as feed. The main results obtained with the process in the laboratory as well as in 6 m3 pilot plant and 200 m3 full-scale experiments are presented and evaluated in this paper. Special attention is given to the main operating characteristics of the UASB reactor concept. Moreover, some preliminary results are presented of laboratory experiments concerning the use of the USB reactor concept for denitrification as well as for the acid formation step in anaerobic treatment. For both purposes the process looks feasible because very satisfactory results with respect to denitrification and acid formation can be achieved at very high hydraulic loads (12 day?1) and high organic loading rates, i.e., 20 kg COD·m?3/day in the denitrification and 60–80 kg COD·m?3/day in the acid formation experiments.  相似文献   

9.
We investigated the anaerobic ammonium oxidation (anammox) reaction in a labscale upflow anaerobic sludge blanket (UASB) reactor. Our aim was to detect and enrich the organisms responsible for the anammox reaction using a synthetic medium that contained low concentrations of substrates (ammonium and nitrite). The reactor was inoculated with granular sludge collected from a full-scale anaerobic digestor used for treating brewery wastewater. The experiment was performed during 260 days under conditions of constant ammonium concentration (50 mg NH4/+-N/L) and different nitrite concentrations (50∼150 mg NO2-N/L). After 200 days, anammox activity was observed in the system. The microorganisms involved in this anammox reaction were identified as CandidatusB. Anammoxidans andK. Stuttgartiensis using fluorescencein situ hybridization (FISH) method.  相似文献   

10.
A laboratory scale upflow anaerobic sludge blanket (UASB) reactor was operated at 35 °C for over 200 days to investigate the granulation mechanism during tetrachloroethylene (TCE) biodegradation. Anaerobic, unacclimated sludge and glucose were used as seed and primary substrate, respectively. TCE-degrading granules developed after 1.5 months of start-up. They grew at an accelerated pace for 7 months. The TCE-degrading granules had a maximum diameter of 2.5 mm and specific methanogenic activity of 1.32 g chemical oxygen demand (COD) g–1 total suspended solid (TSS) day–1. 94% COD and 90% TCE removal efficiencies were achieved when the reactor was operating at loading rates as high as 160 mg TCE l–1 day–1 and 14 g COD l–1 day–1, after 230 days of continuous operation.  相似文献   

11.
The anaerobic digestion of wood ethanol stillage in a UASB reactor was studied. At organic loading rates be low 16 kg COD/m(3) day the reactor performed effectively, achieving soluble COD and BOD removals in excess of 86 and 93%, respectively. Removal of color averaged 40%. At a loading rate of 16 kg COD/m(3) day the methane yield was 0.302 L CH(4) (STP)/g COD removed, and the observed cell yield was 0.112 g VSS/g COD removed. Operation of the reactor at higher loading rates was unsuccessful. Nitrogen, phosphorus, and alkalinity were supplemented. No additions of the essential trace elements Fe, Co, and Ni were required.  相似文献   

12.
H2-producing bacteria were isolated from anaerobic granular sludge. Out of 72 colonies (36 grown under aerobic conditions and 36 under anaerobic conditions) arbitrarily chosen from the agar plate cultures of a suspended sludge, 34 colonies (15 under aerobic conditions and 19 under anaerobic conditions) produced H2 under anaerobic conditions. Based on various biochemical tests and microscopic observations, they were classified into 13 groups and tentatively identified as follows: From aerobic isolates,Aeromonas spp. (7 strains),Pseudomonas spp. (3 strains), andVibrio spp. (5 strains); from anaerobic isolates,Actinomyces spp. (11 strains),Clostridium spp. (7 strains), andPorphyromonas sp. When glucose was used as the carbon substrate, all isolates showed a similar cell density and a H2 production yield in the batch cultivations after 12h (2.24–2.74 OD at 600 nm and 1.02–1.22 mol H2/mol glucose, respectively). The major fermentation by-products were ethanol and acetate for the aerobic isolates, and ethanol, acetate and propionate for the anaerobic isolates. This study demonstrated that several H2 producers in an anaerobic granular sludge exist in large proportions and their performance in terms of H2 production is quite similar.  相似文献   

13.
Methanogenic archaea enrichment of a granular sludge was undertaken in an upflow anaerobic sludge blanket (UASB) reactor fed with methanol in order to enrich methylotrophic and hydrogenotrophic methanogenic populations. A microbial community assessment, in terms of microbial composition and activity—throughout the different stages of the feeding process with methanol and acetate—was performed using specific methanogenic activity (SMA) assays, quantitative real-time polymerase chain reaction (qPCR), and high-throughput sequencing of 16S ribosomal RNA (rRNA) genes from DNA and complementary DNA (cDNA). Distinct methanogenic enrichment was revealed by qPCR of mcrA gene in the methanol-fed community, being two orders of magnitude higher with respect to the initial inoculum, achieving a final mcrA/16S rRNA ratio of 0.25. High-throughput sequencing analysis revealed that the resulting methanogenic population was mainly composed by methylotrophic archaea (Methanomethylovorans and Methanolobus genus), being also highly active according to the RNA-based assessment. SMA confirmed that the methylotrophic pathway, with a direct conversion of methanol to CH4, was the main step of methanol degradation in the UASB. The biomass from the UASB, enriched in methanogenic archaea, may bear great potential as additional inoculum for bioreactors to carry out biogas production and other related processes.  相似文献   

14.
Biodegradability of technical grade hexachlorocyclohexane (tech-HCH) was studied in an upflow anaerobic sludge blanket reactor (UASB) under continuous mode of operation in concentration range of 100-200 mg/l and constant HRT of 48 h. At steady state operation more than 85% removal of tech-HCH (upto 175 mg/l concentration) and complete disappearance of beta-HCH was observed. Kinetic constants in terms of maximum specific tech-HCH utilization rate (k) and half saturation velocity constant (K(L)) were found to be 11.88 mg/g/day and 8.11 mg/g/day, respectively. The tech-HCH degrading seed preparation, UASB reactor startup and degradation in continuous mode of operation of the reactor is presented in this paper.  相似文献   

15.
A column reactor, in which the bottom two-thirds were occupied by a sludge blanket and the upper one-third by submerged clay rings, was evaluated using slaughterhouse wastewater as substrate. The reactor was operated at 35°C at loading rates varying from 5 g to 45 g chemical oxygen demand (COD) 1–1 × day–1 at an influent concentration of 2450 mg COD 1–1. A maximum substrate removal rate of 32 g COD 1–1 × day–1, coupled with a methane production rate of 6.91 × 1–1 × day–1 (STP), was obtained. This removal rate is significantly higher than those previously reported. The rate of substrate utilization by the biomass was 1.22 g COD (g volatile suspended solids)–1 day–1. COD removal was over 96% with loading rates up to 25 g COD 1–1 × day–1, at higher loading rates performance decreased rapidly. It was found that the filter element of the reactor was highly efficient in retaining biomass, leading to a biomass accumulation yield coefficient of 0.029 g volatile suspended solids g–1 COD, higher than reported previously for either upflow anaerobic sludge-blanket reactors or anaerobic filters operating independently.  相似文献   

16.
Qiao W  Peng C  Wang W  Zhang Z 《Bioresource technology》2011,102(21):9904-9911
The supernatant of hydrothermally treated sludge was treated by an upflow anaerobic sludge blanket (UASB) reactor for a 550-days running test. The hydrothermal parameter was 170 °C for 60 min. An mesophilic 8.6 L UASB reactor was seeded with floc sludge. The final organic loading rate (OLR) could reach 18 kg COD/m3 d. At the initial stage running for 189 days, the feed supernatant was diluted, and the OLR reached 11 kg COD/m3 d. After 218 days, the reactor achieved a high OLR, and the supernatant was pumped into the reactor without dilution. The influent COD fluctuated from 20,000 to 30,000 mg/L and the COD removal rate remained at approximately 70%. After 150 days, granular sludge was observed. The energy balance calculation show that heating 1.0 kg sludge needs 0.34 MJ of energy, whereas biogas energy from the supernatant of the heated sludge is 0.43 MJ.  相似文献   

17.
Summary An UASB reactor was used for the anaerobic conversion of an acidic petrochemical effluent into a methane-rich biogas. Reactor efficiency was optimal at an HRT of 1.78 days and loading rate of 7.255 kg COD/m3.d, A COD reduction of 83% was obtained. The gas production was 2.64 m/m .d (STP) and contained more than 90% CH4. A further increase in the loading rate resulted in a drastic decrease in the reactor effectivity.  相似文献   

18.
Phototrophic bacterial cells in the effluent from a lighted upflow anaerobic sludge blanket reactor supplied with a medium containing 142 mg S (as SO4 2–) l–1 accumulated a 6.8% w/w oleic acid content in cells and 19 mg cell-bound oleic acid l–1 in the effluent. Pure cultures of Rhodopseudomonas palustris and Blastochloris sulfoviridis isolated from the effluent also accumulated 5.1 and 6.4% w/w oleic acid contents in cells, respectively. The oleic acid content in the cells recovered from the LUASB reactor effluent was related to the phototrophic bacterial population in the LUASB reactor. The inverse relationship was observed in the LUASB reactor between phototrophic bacterial growth and sulfate concentration in the influent.  相似文献   

19.
The formation of anaerobic granular sludge on wastewater from sugar-beet processing was examined in upflow anaerobic sludge blanket reactors. Two strategies were investigated: addition of high-energy substrate, i.e. sugars, and varying the reactor liquid surface tension. When there were insufficient amounts of sugars i.e. less than 7% of the chemical O2 demand of the influent, no granulation was observed; moreover lowering the reactor liquid surface tension below 48 mN/m was found to increase biomass wash-out. On the other hand, when there were sufficient sugars, granular sludge growth occurred; moreover operating the reactor at a low reactor liquid surface tension reduced biomass wash-out and increased granular yield.  相似文献   

20.
Biotransformation of nitrophenols in upflow anaerobic sludge blanket reactors   总被引:11,自引:0,他引:11  
Four identical bench-scale upflow anaerobic sludge blanket (UASB) reactors, R1, R2, R3 and R4, were used to assess nitrophenols degradation at four different hydraulic retention times (HRT). Reactor R1 was used as control, whereas R2, R3, and R4 were fed with 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), and 2,4-dinitrophenol (2,4-DNP), respectively. The concentration of each nitrophenol was gradually varied from 2 to 30 mg/l during acclimation. After acclimation reactors were operated under steady-state conditions at four different HRTs – 30, 24, 18, and 12 h, to study its effect on the removal of nitrophenols. Overall removal of 2-NP and 4-NP was always more than 99% but 2,4-DNP removal decreased from 96% to 89.7% as HRT was lowered from 30 to 12 h. 2-Aminophenol (2-AP), 4-aminophenol (4-AP) and 2-amino,4-nitrophenol (2-A,4-NP) were found to be the major intermediates during the degradation of 2-NP, 4-NP and 2,4-DNP, respectively. Out of the total input of nitrophenolic concentration (30 mg/l), on molar basis, about 41.2–48.4% of 2-NP, 59.4–68% of 4-NP, 30–26.6% of 2,4-DNP was recovered in the form of their respective amino derivatives at 30–12 h HRT. COD removal was 98–89%, 97–56%, 97–52%, and 94–46% at 30–12 h HRT for R1, R2, R3 and R4, respectively. Average cell growth was observed to be 0.15 g volatile suspended solid (VSS) per g COD consumed. Methanogenic inhibition was observed at lower HRTs (18 and 12 h), however denitrification was always more than 99% with non-detectable level of nitrite. The granules developed inside the reactors were black in color and their average size varied between 1.9 and 2.1 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号