首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular lipid peroxidation was initiated by the addition of ADP-complexed ferric iron to isolated rat hepatocytes and the reaction monitored by the thiobarbituric acid method or by measurement of the formation of conjugated dienes. Both the production of malondialdehyde (thiobarbituric-acid-reacting substances) and of conjugated dienes was dependent, on the ADP-Fe-3+ concentration in a dose-related fashion. Malondialdehyde formation stopped spontaneously within 20 min after the initiation of the reaction and the plateau reached was also related to the ADP-Fe-3+ concentration. Control experiments revealed that more than 90% of the malondialdehyde accumulating during the incubation period could be ascribed to intracellular production. The cellular NADPH/NADP+ ratio was always high and only slightly decreased upon ADP-Fe-3+-induced lipid peroxidation which, however, was associated with a marked decrease in the cellular glutathione concentration. The rate of accumulation of malondialdehyde as well as the final level reached during ADP-Fe-3+-initiated lipid peroxidation was increased by the addition of chloral hydrate. This apparent stimulatory effect could, however, be ascribed to the inhibition of the mitochondrial oxidation of the malondialdehyde formed during cellular lipid peroxidation, thus allowing more malondialdehyde to accumulate during the process. ADP-Fe-3+-induced cellular lipid peroxidation was associated with a decrease in the concentration of glutathione. Also, lowering of the intracellular glutathione level by the addition of diethyl maleate or by simply preincubating the hepatocytes (up to 50 min) promoted the ADP-Fe-3+ malondialdehyde production and formation of conjugated dienes. Furthermore, when cellular glutathione concentration had been lowered by preincubation of the hepatocytes, significant malondialdehyde production could be observed even at ADP-Fe-3+ concentrations which were too low to induce measurable lipid peroxidation in fresh hepatocytes. It is thus concluded that glutathione has an important role in the cell defence against lipid peroxidation and suggested that the isolated hepatocytes provide a suitable experimental model system for the characterization of this and other possible cellular defence mechanisms and how they are affected by the nutritional status of the donor animal.  相似文献   

2.
3.
4.
The microsomal fraction from fish muscle has previously been shown to catalyze the oxidation of its lipid. In this study we have studied the rate of the reaction in the frozen state. The rate was dependent on temperature, decreasing with decreasing temperature. When the microsomes were frozen in the presence of NaCl there was greater activity than when they were frozen in the presence of KCl. The specific activity of the oxidation decreased with increasing protein concentration. This is possibly due to the limitation of oxygen in the frozen system. Lipid oxidation is a complex reaction and both initial products (lipid hydroperoxides) and breakdown products (those reacting with malondialdehyde) were measured. This ratio was relatively constant over a variety of conditions indicating that the rate-limiting step of the reaction occurred prior to the formation of lipid hydroperoxide. A study of the reaction at above-freezing temperatures and below-freezing temperatures in the presence of miscible solvents to prevent freezing at temperatures below 0 °C gave results which were consistent with the hypothesis that ice crystal formation had an accelerating effect on the reaction. Presumably this is due to concentration of reactants since freezing and thawing of the microsomes did not affect their rates of lipid oxidation. Potent inhibitors of the lipid oxidation reaction were found in the soluble fraction of the muscle tissue. These were both high-molecular and low-molecular-weight compounds. The low-molecular-weight inhibitors were more effective in the frozen state while the high-molecular-weight compounds were relatively more effective in the reaction catalyzed at temperatures above freezing.  相似文献   

5.
Delayed, ferrous iron-dependent peroxidation of rat liver microsomes   总被引:1,自引:0,他引:1  
Measurement of both chemiluminescence (CL) and the formation of 2-thiobarbituric acid-reacting substances (TBAR) has been used to study the delayed, nonenzymatic lipid peroxidation (LP) initiated in rat liver microsomes by ferrous chloride. Following Fe2+ addition, the CL technique revealed a burst of light emission (peak, Phase II) which was preceded by a period of little or no detectable photon production (delay, Phase I) and succeeded by an increased emission (Phase III). Analysis of TBAR indicated a low rate of LP during the delay which increased more than fivefold during a 1-min period and which corresponded to the CL peak. The delay length depended on both the Fe2+ concentration and the microsome concentration; increased Fe2+ yielded longer delays while increased microsome concentration decreased the delay. As reported by others [J. R. Bucher, M. Tien, and S. D. Aust (1983) Biochem. Biophys. Res. Commun. 111, 777-784; J. M. Braughler, L. A. Duncan, and R. L. Chase (1986) J. Biol. Chem. 261, 10282-10289], Fe3+ also decreased the delay. The ferric-nitrilotriacetate (Fe3+-NTA) complex was found to be more efficient than "free" Fe3+ [Fe(NO3)3]; a 100 microM concentration of the 1:1 Fe3+-NTA complex eliminated the delay due to 100 microM Fe2+, whereas 400 microM Fe(NO3)3 reduced the delay from 17.5 to 2.5 min. Incubation under reduced O2 tension demonstrated a requirement for O2 during the delay. The use of antioxidants [butylated hydroxytoluene, (+)-catechin, promethazine, and uric acid] and inhibitors of the Haber-Weiss reaction (mannitol, Tris buffer, dimethyl sulfoxide, catalase, and superoxide dismutase) indicated that the initiating species has characteristics of a weak oxidizing radical capable of either hydrogen or electron abstraction from suitable target molecules. We hypothesize that the delay that is sensitive to the Fe2+:microsome ratio is due to reductive elimination of the initiating species by "free" Fe2+. The nature of the initiating species has yet to be determined; however, the argument is presented that the perferryl ion (Fe3+-O2-.) may possess the characteristics required for the initiator.  相似文献   

6.
Lipid peroxidation in regenerating rat liver   总被引:4,自引:0,他引:4  
Rats entrained to a strictly regulated lighting and feeding schedule have been subjected to partial hepatectomy or a sham operation. In the partially hepatectomised animals the period of liver regeneration is characterised by regular bursts of thymidine kinase activity. Liver microsomes from rats, at times corresponding to maximum thymidine kinase activity, have much reduced rates of lipid peroxidation compared to control preparations: this is due in part to increased levels of lipid-soluble antioxidant at times of maximal DNA synthesis. This temporal relationship between thymidine kinase and lipid peroxidation is consistent with the view that lipid peroxidation is decreased prior to cell division.  相似文献   

7.
In an attempt to elucidate further the mechanisms involved in alcohol-mediated liver damage and the correlation between alcohol and viruses in chronic liver lesions, we determined the levels of liver glutathione (GSH), thiobarbituric acid reactive substances (TBARS), iron (Fe), and zinc (Zn) in 31 patients with chronic viral hepatitis (CAH), 6 with alcohol-related chronic hepatitis (CALD), 6 with alcoholic cirrhosis (AC), 8 with primary biliary cirrhosis (PBC), and 10 healthy controls (C). Liver GSH was significantly lower in CALD and AC patients (p<0.005). TBARS levels were significantly higher in CAH, CALD, and PBC patients (p<0.001, <0.02, and <0.001, respectively). In CAH patients, alcohol consumption correlated inversely with GSH and directly with TBARS (p<0.05). Patients with both CAH and alcohol abuse had a further reduction in liver GSH levels (p<0.005). Tissue levels of Fe were significantly increased in CALD and AC patients with respect to controls and CAH patients, whereas no significant difference was observed in Zn. These data confirm that patients with chronic ethanol exposure reveal a depletion in liver GSH content clearly correlated with an increase in lipid peroxidation and Fe liver storage. On the other hand, these findings appear to suggest no significant change in Zn levels in chronic hepatitis.  相似文献   

8.
When rat liver microsomes were incubated with NADPH, the major products were hydroperoxides which increased with time indicating that endogenous iron content is able to promote lipid peroxidation. The addition of either 5 microM Fe2+ or Fe3+ ions strongly enhanced the hydroperoxide formation rate. However, due to the hydroperoxide breakdown, hydroperoxide concentration decreased with time in this case. Higher ferrous or ferric iron concentration did not change the situation much, in that both hydroperoxide breakdown and formation were similar to those when NADPH only was present in the incubation medium. After lipid peroxidation, analysis of fatty acids indicated that the highest amount of peroxidized PUFA occurred in the presence of 5 microM of either Fe2+ or Fe3+. This analysis also showed that after 8 min incubation with low iron concentration, PUFA depletion was about 77% of that observed after 20 min, whereas without any iron addition or in the presence of 30 microM of either Fe3+, PUFA decrease was only about 37% of that observed after 20 min. As far as the optimum Fe2+/Fe3+ ratio required to promote the initiation of microsomal lipid peroxidation in rat liver is concerned, the highest hydroperoxide formation was observed with a ratio ranging from 0.5 to 2. These results indicate that microsomal lipid peroxidation induced by endogenous iron is speeded up by the addition of low concentrations of either Fe2+ or Fe3+ ions, probably because free radicals generated by hydroperoxide breakdown catalyze the propagation process. In experimental conditions unfavourable to hydroperoxide breakdown the principal process is that of the initiation of lipid peroxidation.  相似文献   

9.
Liver slices were used to measure lipid peroxidation induced by bromotrichloromethane, tert-butyl hydroperoxide (t-BOOH), or ferrous iron. The responses of liver homogenates and microsomes to oxidative conditions were compared with the response of tissue slices. Lipid peroxidation was evaluated by the production of thiobarbituric acid-reactive substances (TBARS). As was observed in homogenates and microsomes, TBARS production by liver slices depended upon the amount of tissue, the incubation time, inducer, the amount of inducer, and the presence of antioxidant. Control liver slices incubated at 37 degrees C for 2 h produced 19 nmol of TBARS per g of liver. When slices were incubated in the presence of 1 mM BrCCl3, 1 mM t-BOOH, or 50 microM ferrous iron, TBARS production increased 4.6-, 8.2-, or 6.7-fold over the control value, respectively. Comparable induction of TBARS by liver homogenates and microsomes was observed when these preparations were incubated with the same inducers. Addition of 5 microM butylated hydroxytoluene (BHT) prevented the induction of TBARS by 50 microM ferrous iron by liver slices. The results indicate the usefulness of tissue slices to measure lipid peroxidation. The usefulness of tissue slices is emphasized when a number of compounds or tissues are studied and tissue integrity is desired as in toxicological, pharmacological, and nutritional studies where reduced numbers of experimental animals is a relevant issue.  相似文献   

10.
11.
Pregnant female Wistar rats that received a control (100 ppm Zn) or a Zn-deficient diet (1.5 ppm Zn) from d 0 to 21, or nonpregnant normally fed female rats without or with five daily oral doses of 300 mg/kg salicylic acid were used for the experiments. In isolated mitochondria or microsomes from various maternal and fetal tissues, lipid peroxidation was determined as malondialdehyde formation measured by means of the thiobarbiturate method. Zn deficiency increased lipid peroxidation in mitochondria and microsomes from maternal and fetal liver, maternal kidney, maternal lung microsomes, and fetal lung mitochondria. Lipid peroxidation in fetal microsomes was very low. Zn deficiency produced a further reduction of lipid peroxidation in fetal liver microsomes. Salicylate increased lipid peroxidation in liver mitochondria and microsomes after addition in vitro and after application in vivo. The increase of lipid peroxidation by salicylate may be caused by two mechanisms: an increased cellular Fe uptake that, in turn, can increase lipid peroxidation and chelating Fe, in analogy to the effect of ADP in lipid peroxidation. The latter effect of salicylate is particularly expressed at increased Fe content.  相似文献   

12.
Smooth and rough endoplasmic reticulum of two Morris hepatomas, the slow growing 9618A and the fast growing 3924A, have been isolated, and their biochemical composition, supramolecular organization, and response to the action of peroxidative agents have been studied. Cytochrome P450 content and lipid availability are the limiting factors of their peroxidizability. The hemoprotein content is reduced about 80% in hepatoma 9618A and is virtually absent in hepatoma 3924A. The peroxidizability decreases with increasing growth rate of the tumor. The protein, phospholipid, and cholesterol content, the fatty acid composition as well as the double bond index, and the saturated and unsaturated fatty acid content are reported. Differences have been found between normal liver and tumors and between the fractions within a given tumoral tissue. The molecular order, as determined by fluorescence anisotrophy decay of DPH, increases in total microsomes and in the smooth fraction going from liver 9618A to 3924A, whereas for the rough fraction it is the same in liver and hepatoma 9618A; in 3924A it increases of about 30%. Fluidity decreases in total microsomes going from liver to 3924A, to 9618A. In both the purified fractions it decreases with increasing deviation of the tumor.  相似文献   

13.
Smooth and rough endoplasmic reticulum of two Morris hepatomas, the slow growing 9618A and the fast growing 3924A, have been isolated, and their biochemical composition, supramolecular organization, and response to the action of peroxidative agents have been studied. Cytochrome P450 content and lipid availability are the limiting factors of their peroxidizability. The hemoprotein content is reduced about 80% in hepatoma 9618A and is virtually absent in hepatoma 3924A. The peroxidizability decreases with increasing growth rate of the tumor. The protein, phospholipid, and cholesterol content, the fatty acid composition as well as the double bond index, and the saturated and unsaturated fatty acid content are reported. Differences have been found between normal liver and tumors and between the fractions within a given tumoral tissue. The molecular order, as determined by fluorescence anisotrophy decay of DPH, increases in total microsomes and in the smooth fraction going from liver 9618A to 3924A, whereas for the rough fraction it is the same in liver and hepatoma 9618A; in 3924A it increases of about 30%. Fluidity decreases in total microsomes going from liver to 3924A, to 9618A. In both the purified fractions it decreases with increasing deviation of the tumor.  相似文献   

14.
15.
Lipid peroxidation in the liver of carcinogen-resistant rats   总被引:3,自引:0,他引:3  
Recently, we developed a new strain of rats that exhibit marked resistance to the hepatotoxic and carcinogenic actions of 3'-methyl-4-dimethylaminoazobenzene (3'-MeDAB) and some other carcinogens. In this work, we compared lipid peroxidation in the liver of these carcinogen-resistant (R) rats and the parental Donryu strain rats that are sensitive (S) to hazardous actions of these carcinogens. The liver microsomal fractions of the R group contained less amounts of polyunsaturated fatty acids. Microsomal lipid peroxidation in the presence of exogenous NADPH was much lower in R rats than in S rats. Liver microsomes of R rats were much less active than those of S rats also in producing 4-hydroxynonenal, carbonyl compounds and conjugated diene. The hepatic contents of ascorbic acid, glutathione, alpha-tocopherol and coenzyme Q in the R rats were similar to those in S rats. The activities of the free radical scavenger enzymes, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), in the two groups were also similar. Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are both thought to function in disposal of these cytotoxic aldehydes. The liver microsomal and mitochondrial ALDH activities of the two groups were similar. The ADH activity of the liver cytosolic fraction of R rats was nearly twice that of S rats, as measured with 4-hydroxynonenal as substrate. The higher ADH activity may explain the decreased lipid peroxidation in R rats at least partly, if this enzyme is involved in lipid peroxidation.  相似文献   

16.
17.
Dihydroxyfumaric acid induced lipid peroxidation in rat liver microsomes. This reaction was heat-insensitive contrary to the mitochondrial peroxidation reported in the previous paper, and was enhanced by p-chloromercuribenzoate. Additions of Fe2+ and Fe3+ stimulated both the lipid peroxidation and the disappearance of dihydroxyfumaric acid. On the other hand, addition of Mn2+ or Cu2+, which stimulated the disappearance of dihydroxyfumaric acid, inhibited the lipid peroxidation. Hydroxyl radical scavengers, superoxide dismutase and catalase had no effect on this lipid peroxidation and dihydroxyfumaric acid disappearance. The cytochrome p-450 content decreased about 70 % in parallel with the lipid peroxidation.  相似文献   

18.
Nasal polyp (NP) is considered an inflammatory condition in nasal and paranasal sinus cavities and is frequently encountered in otolaryngology clinics. Although the pathophysiology of nasal polyps is poorly understood, it seems likely that the epithelium may play a critical role in the genesis of inflammatory nasal disease. The aim of this study was to investigate the role of free radicals and antioxidant enzymes in NP and compare these findings with concha bullosa (CB). NP and CB were obtained from 27 and 23 patients, respectively. Glutathione peroxidase (GSH-Px), catalase (CAT), xanthine oxidase (XO) total (enzymic plus non-enzymic) superoxide scavenger activity (TSSA), non-enzymic superoxide scavenger activity (NSSA), superoxide dismutase (SOD), and MDA levels in NP and CB were measured. GSH-Px activiy was significantly lower in patients with NP than in the CB group. However, CAT, XO activities and MDA levels were significantly higher in patients with NP than in the CB group, but TSSA, NSSA and SOD activities were unchanged. Increases in the levels of tissue MDA in patients with NP compared to the CB group may indicate the presence of free radical damage in patients with nasal NP.  相似文献   

19.
T P Devasagayam 《FEBS letters》1986,205(2):246-250
Senescence is associated with decrease in the NADPH-induced lipid peroxidation in liver homogenate as well as rough and smooth microsomes of female rats. In the microsomal fractions, sensitivity to NADPH-induced lipid peroxidation is high in young adults (3-month-old), decreases in middle aged (12-month-old) and reaches lowest levels in senescent (30-month-old) rats. Increasing the concentration of co-factors or time of incubation does not alter this resistance observed in the senescent rats. Major factors responsible for this resistance in senescent rats seem to be low levels of substrate in the c reductase, cytochrome P-450 and high cholesterol:phospholipid ratios besides enhanced levels of superoxide dismutase, alpha-tocopherol and reduced glutathione.  相似文献   

20.
Effect of thiols on lipid peroxidation in rat liver microsomes   总被引:1,自引:0,他引:1  
The stimulatory or inhibitory effects of various thiol compounds on in vitro lipid peroxidation by iron-ascorbate in rat liver microsomes were determined. Glutathione had no measurable pro-oxidant capacity, in contrast, it protected against lipid peroxidation. N-Acetyl l-cysteine and S-methyl-glutathione had no effect on in vitro lipid peroxidation. l-Cysteine stimulated lipid peroxidation and also of d-penicillamine and dl-dithiothreitol the pre-oxidant capacity predominated the anti-oxidant capacity. Cysteamine afforded a pronounced protection against in vitro lipid peroxidation. In contrast to the labile character of the glutathione dependent protection, the protection by cysteamine was not affected by heat-pretreatment of the liver microsomes or alkylating protein sulfhydryl groups by N-ethyl maleimide. Again in contrast to glutathione, the protection against in vitro microsomal lipid peroxidation by cysteamine was not reduced after in vivo lipid peroxidation induced by CC14. This suggests that even after the process of lipid peroxidation has been started, administration of cysteamine might still be beneficial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号