首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the underlying principles in drug discovery is that a biologically active compound is complimentary in shape and molecular recognition features to its receptor. This principle infers that molecules binding to the same receptor may share some common features. Here, we have investigated whether the electrostatic similarity can be used for the discovery of small molecule protein-protein interaction inhibitors (SMPPIIs). We have developed a method that can be used to evaluate the similarity of electrostatic potentials between small molecules and known protein ligands. This method was implemented in a software called EleKit. Analyses of all available (at the time of research) SMPPII structures indicate that SMPPIIs bear some similarities of electrostatic potential with the ligand proteins of the same receptor. This is especially true for the more polar SMPPIIs. Retrospective analysis of several successful SMPPIIs has shown the applicability of EleKit in the design of new SMPPIIs.  相似文献   

2.
Toll-like receptor 4 (TLR4) is a member of Toll-Like Receptors (TLRs) family that serves as a receptor for bacterial lipopolysaccharide (LPS). TLR4 alone cannot recognize LPS without aid of co-receptor myeloid differentiation factor-2 (MD-2). Binding of LPS with TLR4 forms a LPS?TLR4?MD-2 complex and directs downstream signaling for activation of immune response, inflammation and NF-κB activation. Activation of TLR4 signaling is associated with various pathophysiological consequences. Therefore, targeting protein–protein interaction (PPI) in TLR4?MD-2 complex formation could be an attractive therapeutic approach for targeting inflammatory disorders. The aim of present study was directed to identify small molecule PPI inhibitors (SMPPIIs) using pharmacophore mapping-based approach of computational drug discovery. Here, we had retrieved the information about the hot spot residues and their pharmacophoric features at both primary (TLR4?MD-2) and dimerization (MD-2?TLR4*) protein–protein interaction interfaces in TLR4?MD-2 homo-dimer complex using in silico methods. Promising candidates were identified after virtual screening, which may restrict TLR4?MD-2 protein–protein interaction. In silico off-target profiling over the virtually screened compounds revealed other possible molecular targets. Two of the virtually screened compounds (C11 and C15) were predicted to have an inhibitory concentration in μM range after HYDE assessment. Molecular dynamics simulation study performed for these two compounds in complex with target protein confirms the stability of the complex. After virtual high throughput screening we found selective hTLR4?MD-2 inhibitors, which may have therapeutic potential to target chronic inflammatory diseases.  相似文献   

3.
Photoaffinity labeling has a longstanding history as a powerful biochemical technique. However, photoaffinity labeling has significantly evolved over the past decade principally due to its coupling with bioorthogonal/click chemistry reactions. This review aims to highlight tandem photoaffinity labeling–bioorthogonal conjugation as a chemical approach in medicinal chemistry and chemical biology. In particular, recent examples of using this strategy for affinity-based protein profiling (AfBPP), drug target identification, binding ensemble profiling, studying endogenous biological molecules, and imaging applications will be presented. Additionally, recent advances in the development of ‘all-in-one’ compact moieties possessing a photoreactive group and clickable handle will be discussed.  相似文献   

4.
《Médecine Nucléaire》2014,38(5):299-302
Breast cancer treatment has developed rapidly for the last 15 years, promoted by a better understanding of tumour growth biology. Targeted therapies have been rapidly expending: immunotherapy, targeted chemotherapy, endocrine therapy efficacy enhanced by mTOR inhibitors. Changes of molecular profiling tumours during the illness need to perform regularly biopsies and to adapt drugs. This article will focus on a high-level overview of main advances across systemic treatment.  相似文献   

5.
The aldo-keto reductases (AKR) comprise a large family of oxidoreductases with importance to both health and industrial applications. The redox chemistry of the AKRs is dependent on NAD(P)H as a cofactor. Despite a wealth of structural and biochemical data relating to the interaction of AKRs with specific inhibitors, much less is known regarding the interactions with cofactor or substrate. In particular, while many X-ray structures are available for AKR/inhibitor complexes, they are only a few examples where apo- and holo- forms can be directly compared. Thus, while the role of the cofactor in the redox chemistry is generally understood, the details of the structural dynamics associated with cofactor binding are less clear. Likewise, the structural details of both cofactor and substrate specificity are limited. In this review, we focus on details of the structural biology and molecular dynamics associated with catalysis, cofactor, and substrate binding as elucidated for those AKRs for which apo- and holo- structures are available. Understanding such dynamics may identify a new direction in the design of specific inhibitors.  相似文献   

6.
The ubiquitin-proteasome system   总被引:10,自引:0,他引:10  
The 2004 Nobel Prize in chemistry for the discovery of protein ubiquitination has led to the recognition of cellular proteolysis as a central area of research in biology. Eukaryotic proteins targeted for degradation by this pathway are first ‘tagged’ by multimers of a protein known as ubiquitin and are later proteolyzed by a giant enzyme known as the proteasome. This article recounts the key observations that led to the discovery of ubiquitin-proteasome system (UPS). In addition, different aspects of proteasome biology are highlighted. Finally, some key roles of the UPS in different areas of biology and the use of inhibitors of this pathway as possible drug targets are discussed.  相似文献   

7.
Activity-based protein profiling (ABPP) is one of the main driving forces in chemical biology and one of the most visible areas where organic chemistry contributes to chemical biology research. In recent years, ABPP research has gradually made the transfer from the relatively easy target enzymes (for instance serine hydrolases, cysteine and threonine proteases) toward targeting enzymes that are intrinsically more difficult to address. These include less abundant enzymes, enzymes that do not employ a nucleophilic amino acid residue in their active site and enzymes more particular with respect to their substrate. At the same time, ABPP has started to make a tangible impact on clinical research.  相似文献   

8.
Activity-based proteomics is a methodology that is used to quantify the catalytically active subfraction of enzymes present in complex mixtures such as lysates or living cells. To apply this approach for in-cell selectivity profiling of inhibitors of serine proteases, we designed a novel activity-based probe (ABP). This ABP consists of (i) a fluorophosphonate-reactive group, directing the probe toward serine hydrolases or proteases and (ii) an alkyne functionality that can be specifically detected at a later stage with an azide-functionalized reporter group through a Cu(I)-catalyzed coupling reaction ("click chemistry"). This novel ABP was shown to label the active site of several serine proteases with greater efficiency than a previously reported fluorophosphonate probe. More importantly, our probe was cell-permeable and achieved labeling of enzymes within living cells with efficiency similar to that observed for the corresponding lysate fraction. Several endogenous serine hydrolases whose activities were detected upon in-cell labeling were identified by two-dimensional gel and MS analyses. As a proof of principle, cell-permeable inhibitors of an endogenous serine protease (prolyl endopeptidase) were assessed for their potency and specificity in competing for the in situ labeling of the selected enzyme. Altogether these results open new perspectives for safety profiling studies in uncovering potential cellular "side effects" of drugs (unanticipated off-target inhibition or activation) that may be overlooked by standard selectivity profiling methods.  相似文献   

9.
A sub-class of distinct small molecule ROMK inhibitors were developed from the original lead 1. Medicinal chemistry endeavors led to novel ROMK inhibitors with good ROMK functional potency and improved hERG selectivity. Two of the described ROMK inhibitors were characterized for the first in vivo proof-of-concept biology studies, and results from an acute rat diuresis model confirmed the hypothesis that ROMK inhibitors represent new mechanism diuretic and natriuretic agents.  相似文献   

10.
Combinatorial chemistry has become a popular tool for the preparation of collections of compounds that can be used to find inhibitors and substrates for different protein targets. It has evolved to provide small molecule libraries, which, with the concomittant use of affinity chromatography, gene expression profiling and complementation, can be used to identify compounds and their protein targets in biological systems, including the neurological system.  相似文献   

11.
The discovery of a series of potent, selective and reversible dipeptidyl caspase-3 inhibitors are reported. The iterative discovery process of using combinatorial chemistry, parallel synthesis, moleculare modelling and structural biology will be discussed.  相似文献   

12.
《Gene》1996,174(1):151-158
An expression profile of active genes in the human liver was obtained by collecting sequences with a 3′-directed cDNA library that faithfully represents composition of the mRNA population. The results show the relative activity of ca. 600 genes in maintaining the hepatocytes and sustaining their liver-specific phenotypes. The most active group of genes are those for the production of plasma proteins, followed by the genes for the synthesis of lipoproteins, protease inhibitors, coagulation factors, and complements. This balance of gene activity was maintained for four independently obtained expression profiles from human livers, including those of adult and fetus. The expression profiling was extended to the liver of adult mouse, used as a model for the molecular etiology of hepatocytes and for examining the effects of drugs. Subtle biological differences between the human and mouse livers are reflected in the global expression profiles of active genes, especially with regard to the synthesis of plasma proteins, lipoproteins and complements. This comparative analysis using expression profiling should find a wide application in comparative biology.  相似文献   

13.
The review will cover the chemistry and biochemistry of angiotensin-converting enzyme inhibitors with emphasis on data published since the publication of previous reviews. The relative merits of each contribution will be evaluated, as well as their potential for leading to new discoveries. The biology of angiotensin-converting enzyme inhibitors will be brought up-to-date to give the reader an appreciation of the medical implications of this new type of antihypertensive agent.  相似文献   

14.
N-Benzylic-substituted glycine sulfonamides that reversibly inhibit diacylglycerol (DAG) lipases are reported. Detailed herein are the structure activity relationships, profiling characteristics and physico-chemical properties for the first reported series of DAG lipase (DAGL) inhibitors that function without covalent attachment to the enzyme. Highly potent examples are presented that represent valuable tool compounds for studying DAGL inhibition and constitute important leads for future medicinal chemistry efforts.  相似文献   

15.
An intensive recent effort to develop ATP-competitive mTOR inhibitors has resulted in several potent and selective molecules such as Torin1, PP242, KU63794, and WYE354. These inhibitors are being widely used as pharmacological probes of mTOR-dependent biology. To determine the potency and specificity of these agents, we have undertaken a systematic kinome-wide effort to profile their selectivity and potency using chemical proteomics and assays for enzymatic activity, protein binding, and disruption of cellular signaling. Enzymatic and cellular assays revealed that all four compounds are potent inhibitors of mTORC1 and mTORC2, with Torin1 exhibiting ~20-fold greater potency for inhibition of Thr-389 phosphorylation on S6 kinases (EC(50) = 2 nM) relative to other inhibitors. In vitro biochemical profiling at 10 μM revealed binding of PP242 to numerous kinases, although WYE354 and KU63794 bound only to p38 kinases and PI3K isoforms and Torin1 to ataxia telangiectasia mutated, ATM and Rad3-related protein, and DNA-PK. Analysis of these protein targets in cellular assays did not reveal any off-target activities for Torin1, WYE354, and KU63794 at concentrations below 1 μM but did show that PP242 efficiently inhibited the RET receptor (EC(50), 42 nM) and JAK1/2/3 kinases (EC(50), 780 nM). In addition, Torin1 displayed unusually slow kinetics for inhibition of the mTORC1/2 complex, a property likely to contribute to the pharmacology of this inhibitor. Our results demonstrated that, with the exception of PP242, available ATP-competitive compounds are highly selective mTOR inhibitors when applied to cells at concentrations below 1 μM and that the compounds may represent a starting point for medicinal chemistry efforts aimed at developing inhibitors of other PI3K kinase-related kinases.  相似文献   

16.
17.
生物信息学   总被引:2,自引:0,他引:2  
田云  卢向阳 《生物学杂志》2002,18(3):11-12,29
生物信息学是采用计算机技术和信息论方法研究生命科学中各种生物信息的表达;采集,储存,传递,检索,分析和解读的科学,是现代生命科学与信息科学,计算机科学,数学,统计学,物理学,化学等学科相互渗透和高度交叉形成的学科,本文简要介绍了现代生物信息学的主要研究领域。  相似文献   

18.
Although proteases represent an estimated 5% to 10% of potential drug targets, inhibitors for metalloproteases (MPs) account for only a small proportion of all approved drugs, failures of which have typically been associated with lack of selectivity. In this study, the authors describe a novel and universal binding assay based on an actinonin derivative and show its binding activities for several MPs and its lack of activity toward all the non-MPs tested. This newly developed assay would allow for the rapid screening for inhibitors of a given MP and for the selectivity profiling of the resulting hits. The assay has successfully enabled for the first time simultaneous profiling of 8 well-known inhibitors against a panel of selected MPs. Previously published activities for these inhibitors were confirmed, and the authors have also discovered new molecular targets for some of them. The authors conclude that their profiling platform provides a generic assay solution for the identification of novel metalloprotease inhibitors as well as their selectivity profiling using a simple and homogeneous assay.  相似文献   

19.
The Saccharomyces genome-deletion project created >5900 'molecularly barcoded' yeast knockout mutants (YKO mutants). The YKO mutant collections have facilitated large-scale analyses of a multitude of mutant phenotypes. For example, both synthetic genetic array (SGA) and synthetic-lethality analysis by microarray (SLAM) methods have been used for synthetic-lethality screens. Global analysis of synthetic lethality promises to identify cellular pathways that 'buffer' each other biologically. The combination of global synthetic-lethality analysis, together with global protein-protein interaction analyses, mRNA expression profiling and functional profiling will, in principle, enable construction of a cellular 'wiring diagram' that will help frame a deeper understanding of human biology and disease.  相似文献   

20.
Morphoproteomics combines the disciplines of histopathology, molecular biology and protein chemistry to paint a portrait of the protein circuitry in diseased cells for the purpose of uncovering molecular targets amenable to specific intervention, thereby customizing therapy for individual patients. This review considers the clinical application of morphoproteomics in malignant cells in the context of currently available pharmaceutical agents and discusses opportunities for combinatorial approaches that involve one or more small molecule inhibitors and single-agent chemotherapy with relatively low toxicity profiles. Future directions that involve focusing on points of convergence in signal transduction pathways and which integrate morphoproteomic with genomic and pharmacoproteomic and protein-function microarray data are offered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号