首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glomerulus particle preparations contain large fragments of the cerebellar glomeruli and are composed almost exclusively of well-defined neuronal processes (Balázs et al., 1975). The metabolic competence of the glomerulus particles was demonstrated by their ability to convert [14C]glucose to 14CO2 and lactate at a linear rate for over 1 h. The preparations also transported deoxyglucose via an high affinity uptake system (KT= 0.2-0.5 mM). The kinetics of uptake of various labelled amino acids were also studied. Apparently high affinity uptake systems (KT values about 10-5 M) were found for thc putative transmitters GABA, glycine, glutamate, and aspartate, but not for leucine, serine, and tyrosine. The maximal velocity of high affinity uptake was the greatest for GABA (about 15 nmol/mg protein per 10 min), while glycine was taken up at about 50%, and aspartate and glutamate at only 13% of the rate obtained with GABA. High affinity uptake of glycine required Na+ (half maximal uptake at 70 mM-NaCl). Inhibition of glucose transport and glycolysis, electron transport, or oxidative phosphorylation also depressed high affinity uptake of glycine. 2,4-Diaminobutyric acid was a potent competitive inhibitor of GABA uptake (K1 approx 22 μM), while β-alanine and glycine had a relatively minor inhibitory effect on the uptake of GABA.  相似文献   

2.
1. The effect of triperidol on the metabolism of glucose, pyruvate, glutamate, aspartate and glycine was studied with rat brain-cortex slices, U-14C-labelled substrates and a quantitative radiochromatographic technique. 2. Triperidol at a concentration of 0·2mm decreased the oxygen uptake and the 14CO2 production by about 30% when glucose, pyruvate and glutamate were used as substrates, whereas no effects were observed with aspartate and glycine. 3. The drug did not alter qualitatively the metabolic pattern of the substrates. 4. Quantitatively, triperidol decreased the incorporation of 14C from [U-14C]glucose and [U14-C]-pyruvate into glutamate, glutamine and γ-aminobutyrate but not into lactate, alanine and aspartate. The overall utilization rates of glucose and pyruvate were decreased. The relative specific radioactivities of glutamate and aspartate were also decreased. 5. Triperidol increased the rate of disappearance of U-14C-labelled glutamate, aspartate and glycine from the incubation medium, and altered the distribution of their metabolites between medium and tissue. 6. No appreciable effect of triperidol on [1-14C]galactose disappearance was found.  相似文献   

3.
Trypanosoma gambiense absorbed 14C-labeled lysine, arginine, glutamate, phenylalanine, methionine, threonine, glycine, and alanine by mediated transport systems. The interactions of these compounds as inhibitors or stimulators formed complex patterns of uptake which suggested the presence of five binding and/or transport loci: Locus A bound glutamate, arginine, and lysine, and the binding of glutamate or arginine stimulated the transport of lysine. Locus B transported threonine, glycine, and alanine and appeared to be partially sensitive to ouabain and Na+. Locus C transported glutamate, locus D transported phenylalanine and methionine, and locus E transported lysine and arginine.  相似文献   

4.
Biosynthesis of amino acids in Clostridium pasteurianum   总被引:4,自引:3,他引:1  
1. Clostridium pasteurianum was grown on a synthetic medium with the following carbon sources: (a) (14)C-labelled glucose, alone or with unlabelled aspartate or glutamate, or (b) unlabelled glucose plus (14)C-labelled aspartate, glutamate, threonine, serine or glycine. The incorporation of (14)C into the amino acids of the cell protein was examined. 2. In both series of experiments carbon from exogenous glutamate was incorporated into proline and arginine; carbon from aspartate was incorporated into glutamate, proline, arginine, lysine, methionine, threonine, isoleucine, glycine and serine. Incorporations from the other exogenous amino acids indicated the metabolic sequence: aspartate --> threonine --> glycine right harpoon over left harpoon serine. 3. The following activities were demonstrated in cell-free extracts of the organism: (a) the formation of aspartate by carboxylation of phosphoenolpyruvate or pyruvate, followed by transamination; (b) the individual reactions of the tricarboxylic acid route to 2-oxoglutarate from oxaloacetate; glutamate dehydrogenase was not detected; (c) the conversion of aspartate into threonine via homoserine; (d) the conversion of threonine into glycine by a constitutive threonine aldolase; (e) serine transaminase, phosphoserine transaminase, glycerate dehydrogenase and phosphoglycerate dehydrogenase. This last activity was abnormally high. 4. The combined evidence indicates that in C. pasteurianum the biosynthetic role of aspartate and glutamate is generally similar to that in aerobic and facultatively aerobic organisms, but that glycine is synthesized from glucose via aspartate and threonine.  相似文献   

5.
The exit of glutamate from Escherichia coli K-12 cells preloaded with the radioactive amino acid and its relation to the reaction of entry were studied. Experiments with cells preloaded to different intracellular concentrations of radioactive glutamate confirmed our earlier conclusion that glutamate exit was a first-order reaction. l-Glutamate, competitive inhibitors of glutamate uptake (d-glutamate and l-glutamate-gamma-methyl ester), noncompetitive inhibitors of glutamate uptake (l-serine and l-alanine), and the energy poison NaN(3) all accelerated glutamate exit 2.8-fold. No additive effect was observed in the presence of NaN(3) together with l-glutamate. Preloading with cold l-glutamate did not increase the rate of uptake of radioactive glutamate. It is concluded that the acceleration of glutamate exit in the presence of l-glutamate in the medium is not due to exchange diffusion and that l-glutamate and azide affect exit indirectly by preventing recapture. Sucrose, 25%, slowed down glutamate exit by a factor of about 4.7 and increased the steady-state level of glutamate accumulation to about the same extent. Increasing the intracellular K(+) concentration enhanced glutamate uptake but did not affect the half-time of exit. It is concluded that separate carriers are most probably involved in mediating the entry and exit reactions.  相似文献   

6.
When cultured cells from patients with Lowe's syndrome were incubated for short periods of time in phosphate-buffered saline, they reveal a marked increase in accumulation of [14C]proline. No differences were observed in the uptake of glycine, glutamate and lysine. Although the mechanism for the increased proline uptake by affected cells under these special conditions is not known, this phenomenon may be useful in delineating the Lowe's phenotype.  相似文献   

7.
8.
Leishmania donovani promastigotes were grown to late log phase, washed and resuspended in iso-osmotic buffer containing L-arginine, and the rate of urea formation was then measured under various conditions. Addition of glucose or mannose activated urea formation, whereas 2-deoxyglucose inhibited and 6-deoxyglucose had no effect. Addition of alanine or of alpha-aminoisobutyrate inhibited urea formation, alanine causing a greater inhibition than alpha-aminoisobutyrate. Addition of leucine, proline, glycine, or lysine had no effect on urea formation. The presence of glutamate also increased the rate of urea formation from arginine, but to a lesser extent than did glucose. The presence of both glucose and alanine caused no net change in urea formation, whereas the inhibitory effect of alanine exceeded the activating effect of glutamate, so that a small inhibition in the rate of urea formation occurred in the presence of both alanine and glutamate. Cells grown to 3-day stationary phase had a markedly reduced rate of arginine catabolism to urea, but the activating effect of glucose and the inhibitory effect of alanine were qualitatively similar to their effects on late log phase cells. Addition of water to cells suspended in buffer also inhibited urea formation, but this appeared to be due primarily to the release of alanine caused by the hypo-osmotic stress. Addition of mannitol to cells suspended in buffer caused a small inhibition of arginine catabolism. Addition of dibutyrylcyclic AMP, 3',5'-cyclic GMP, phorbol myristic acid, or A23187 had no effect on the rate of urea formation from arginine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
P M Burger  J Hell  E Mehl  C Krasel  F Lottspeich  R Jahn 《Neuron》1991,7(2):287-293
gamma-Aminobutyric acid (GABA) and glycine are major inhibitory neurotransmitters that are released from nerve terminals by exocytosis via synaptic vesicles. Here we report that synaptic vesicles immunoisolated from rat cerebral cortex contain high amounts of GABA in addition to glutamate. Synaptic vesicles from the rat medulla oblongata also contain glycine and exhibit a higher GABA and a lower glutamate concentration than cortical vesicles. No other amino acids were detected. In addition, the uptake activities of synaptic vesicles for GABA and glycine were compared. Both were very similar with respect to substrate affinity and specificity, bioenergetic properties, and regional distribution. We conclude that GABA, glycine, and glutamate are the only major amino acid neurotransmitters stored in synaptic vesicles and that GABA and glycine are transported by similar, if not identical, transporters.  相似文献   

10.
A new method for measuring transintegumental uptake in living schistosomes in vitro has been applied to the study of individual males and females. Uptake of a 14-C labeled test metabolite was compared to that of tritiated water (a highly diffusible reference substance). Use of the short half-life (T 1/2 = 100 min) isotope 113m-Indium, bound to EDTA (ethylene diamine tetra-acetic acid, a nondiffusible reference substance) permitted quantification of the relative amount of 14-C test substance passively adhering to the schistosoma surface. Substraction of this amount provided an estimate of net uptake. D-glucose uptake, as measured by this method, increased with time, approaching equilibrium by two min; a positive correlation between temperature and glucose uptake was also observed. Nondialyzable components in rat, human, horse and fetal calf sera did not enhance glucose uptake. In both male and female schistosomes, minimal uptakes were seen for the nonmetabolizable sugar alcohol mannitol (MW = 182). L-glucose uptake was similarly low, but high uptakes were observed in both sexes for D-glucose. In addition to confirming the stereospecificity of hexose uptake, these studies suggested our technique provides a sensitive method for measurement of both high and low uptake compounds. The uptakes of D-glucose and the L-amino acids--arginine, ornithine, lysine, histidine, phenylalanine and serine--were comparatively higher in female than male schistosomes. Slight elevations in uptake by females were observed for threonine, valine and glycine, but aspartate uptake was slightly higher in males. No dramatic male-female differences were immediately apparent for the uptakes of proline, leucine, isoleucine, tyrosine and glutamate. Schistosomal uptake of L-amino acids that are essential for vertebrates was generally higher than uptake of the nonessential amino acids.  相似文献   

11.
ABSTRACT Leishmania donovani promastigotes were grown to late log phase, washed and resuspended in iso-osmotic buffer containing L-arginine, and the rate of urea formation was then measured under various conditions. Addition of glucose or mannose activated urea formation, whereas 2-deoxyglucose inhibited and 6-deoxyglucose had no effect. Addition of alanine or of α -aminoisobutyrate inhibited urea formation, alanine causing a greater inhibition than α -aminoisobutyrate. Addition of leucine, proline, glycine, or lysine had no effect on urea formation. The presence of glutamate also increased the rate of urea formation from arginine, but to a lesser extent than did glucose. The presence of both glucose and alanine caused no net change in urea formation, whereas the inhibitory effect of alanine exceeded the activating effect of glutamate, so that a small inhibition in the rate of urea formation occurred in the presence of both alanine and glutamate. Cells grown to 3-day stationary phase had a markedly reduced rate of arginine catabolism to urea, but the activating effect of glucose and the inhibitory effect of alanine were qualitatively similar to their effects on late log phase cells. Addition of water to cells suspended in buffer also inhibited urea formation, but this appeared to be due primarily to the release of alanine caused by the hypo-osmotic stress. Addition of mannitol to cells suspended in buffer caused a small inhibition of arginine catabolism. Addition of dibutyrylcyclic AMP, 3',5'-cyclic GMP, phorbol myristic acid, or A23187 had no effect on the rate of urea formation from arginine. It is suggested that the effects of glucose and 2-deoxyglucose on arginine catabolism depend largely upon the nature of their metabolites, whereas the effects of the various amino acids examined depend largely on the extent to which they interfere with or enhance arginine transport into the cells.  相似文献   

12.
Maintenance of isolated retinal Müller (glial) cells in glutamate-free solutions over 7 h causes a significant loss of their initial glutathione content; this loss is largely prevented by the blockade of glutamine synthesis using methionine sulfoximine (5 mM). Anoxia does not reduce the glutathione content of Müller cells when glucose (11 mM), glutamate and cystine (0.1 mM each) are present. In contrast, simulation of total ischemia (i.e., anoxia plus removal of glucose) decreases the glutathione levels dramatically, even in the presence of glutamate and cystine. Less severe effects are caused by high extracellular K+ (40 mM). Reactive oxygen species are generated in the retina under various conditions, such as anoxia, ischemia, and reperfusion. One of the crucial substances protecting the retina against reactive oxygen species is glutathione, a tripeptide constituted of glutamate, cysteine and glycine. It was recently shown that glutathione can be synthesized in retinal Müller glial cells and that glutamate is the rate-limiting substance. In this study, glutathione levels were determined in acutely isolated guinea-pig Müller cells using the glutathione-sensitive fluorescent dye monochlorobimane. The purpose was to find out how the glial glutathione content is affected by anoxia/ischemia and accompanying pathophysiological events such as depolarization of the cell membrane. Our results further strengthen the view that glutamate is rate-limiting for the glutathione synthesis in glial cells. During glutamate deficiency, as caused by e.g., impaired glutamate uptake, this amino acid is preferentially delivered to the glutamate-glutamine pathway, at the expense of glutathione. This mechanism may contribute to the finding that total ischemia (but not anoxia) causes a depletion of glial glutathione. In situ depletion may be accelerated by the ischemia-induced increase of extracellular K+, decreasing the driving force for glutamate uptake. The ischemia-induced lack of glutathione is particularly fatal considering the increased production of reactive oxygen species under this condition. Therefore the therapeutic application of exogenous free radical scavengers is greatly recommended.  相似文献   

13.
Astrocytic energetics of excitatory neurotransmission is controversial due to discrepant findings in different experimental systems in vitro and in vivo. The energy requirements of glutamate uptake are believed by some researchers to be satisfied by glycolysis coupled with shuttling of lactate to neurons for oxidation. However, astrocytes increase glycogenolysis and oxidative metabolism during sensory stimulation in vivo, indicating that other sources of energy are used by astrocytes during brain activation. Furthermore, glutamate uptake into cultured astrocytes stimulates glutamate oxidation and oxygen consumption, and glutamate maintains respiration as well as glucose. The neurotransmitter pool of glutamate is associated with the faster component of total glutamate turnover in vivo, and use of neurotransmitter glutamate to fuel its own uptake by oxidation-competent perisynaptic processes has two advantages, substrate is supplied concomitant with demand, and glutamate spares glucose for use by neurons and astrocytes. Some, but not all, perisynaptic processes of astrocytes in adult rodent brain contain mitochondria, and oxidation of only a small fraction of the neurotransmitter glutamate taken up into these structures would be sufficient to supply the ATP required for sodium extrusion and conversion of glutamate to glutamine. Glycolysis would, however, be required in perisynaptic processes lacking oxidative capacity. Three lines of evidence indicate that critical cornerstones of the astrocyte-to-neuron lactate shuttle model are not established and normal brain does not need lactate as supplemental fuel: (i) rapid onset of hemodynamic responses to activation delivers oxygen and glucose in excess of demand, (ii) total glucose utilization greatly exceeds glucose oxidation in awake rodents during activation, indicating that the lactate generated is released, not locally oxidized, and (iii) glutamate-induced glycolysis is not a robust phenotype of all astrocyte cultures. Various metabolic pathways, including glutamate oxidation and glycolysis with lactate release, contribute to cellular energy demands of excitatory neurotransmission.  相似文献   

14.
The involvement of NMDA glutamate receptors in the effects of glucose/oxygen deprivation (in vitro ischaemia) on spontaneous endogenous acetylcholine and glutamate overflow from the guinea pig ileum was studied. Neurotransmitter overflow was measured by HPLC. Deprivation of glucose in the medium slightly reduced acetylcholine overflow, and did not significantly influence glutamate overflow. During oxygen deprivation and glucose/oxygen deprivation, acetylcholine overflow augmented with a biphasic modality: an early peak was followed by a long lasting increase, whereas glutamate overflow increased with a rapid and sustained modality. The effects of glucose/oxygen deprivation on both acetylcholine and glutamate overflow were abolished after reperfusion with normal oxygenated medium. Acetylcholine and glutamate overflow induced by glucose/oxygen deprivation were significantly reduced in the absence of external Ca(2+) as well as by the addition of the mitochondrial Na(+)-Ca(2+) exchanger blocker, CGP 37157, and of the endoplasmic reticulum Ca(2+)/ATPase blocker, thapsigargin. +/-AP5, an NMDA receptor antagonist, and 5,7-diCl-kynurenic acid, an antagonist of the glycine site associated to NMDA receptor, markedly depressed glucose/oxygen deprivation-induced acetylcholine and glutamate overflow as well. Our results suggest that in vitro simulated ischaemia evokes acetylcholine and glutamate overflow from the guinea pig ileum, which is partly linked to an increase in intracellular Ca(2+) concentration dependent on both Ca(2+) influx from the extracellular space and Ca(2+) mobilization from the endoplasmic reticulum and mitochondrial stores. During glucose/oxygen deprivation, ionotropic glutamate receptors of the NMDA type exert both a positive feedback modulation of glutamate output and contribute to increased acetylcholine overflow.  相似文献   

15.
SYNOPSIS. Uptake of 14C-labeled alanine, glutamate, lysine, methionine, proline, and phenylalanine by Trypanosoma equiperdum during 2-minute incubations occurred by diffusion and membrane-mediated processes. Amino acid metabolism was not detected by paper chromatography of trypanosome extracts. Most of 18 carbohydrates tested for ability to alter amino acid transport neither changed nor significantly inhibited transport. Glucose, however, stimulated glutamate, lysine and proline transport; fructose stimulated lysine uptake and 2-deoxy-D-glucose increased phenylalanine and methionine absorption. No evidence was found that the carbohydrates acted by binding to amino acid transport “sites.” Glucose inhibition of alanine, phenylalanine, and methionine uptake was linked to glycolysis. The rapid formation of alanine from glucose stimulated alanine release and, when glycolysis was blocked, glucose no longer inhibited alanine transport. Methionine and phenylalanine release was also stimulated by glucose. Glucose changed the ability of lysine, glutamate, and proline to inhibit each others’uptake, indicating that certain amino acids are preferentially absorbed by respiring cells. Analysis of free pool amino acid levels suggested that some amino acid transport systems in T. equiperdum are linked in such a way to glycolysis as to control the cell concentrations of these amino acids.  相似文献   

16.
A defined medium for growth of 24 strains of Moraxella (Branhamella) catarrhalis was devised. This medium (medium B4) contains sodium lactate as a partial carbon source, proline as both a partial carbon source and a partial nitrogen source, aspartate as a partial nitrogen source, and the growth factors arginine, glycine, and methionine. Either aspartate, glutamate, or proline could serve as sole nitrogen source, but growth occurred at a significantly better rate if proline was present together with either aspartate or glutamate, or with both aspartate and glutamate. With the exception of strain ATCC 23246, all the strains had an absolute requirement for arginine and either a partial or absolute requirement for glycine. The concentration of glycine required for optimal growth was found to be relatively high for an amino acid growth factor. Heart infusion broth was found to be growth inhibitory for spontaneous mutants of one strain able to grow in the absence of arginine, and such mutants reverted readily to arginine dependence accompanied by the ability to grow faster on the complex medium. Growth rates in the defined medium B4 were enhanced by the simultaneous addition of asparagine, glutamate, glutamine, leucine, lysine, histidine, and phenylalanine.  相似文献   

17.
A defined medium for growth of 24 strains of Moraxella (Branhamella) catarrhalis was devised. This medium (medium B4) contains sodium lactate as a partial carbon source, proline as both a partial carbon source and a partial nitrogen source, aspartate as a partial nitrogen source, and the growth factors arginine, glycine, and methionine. Either aspartate, glutamate, or proline could serve as sole nitrogen source, but growth occurred at a significantly better rate if proline was present together with either aspartate or glutamate, or with both aspartate and glutamate. With the exception of strain ATCC 23246, all the strains had an absolute requirement for arginine and either a partial or absolute requirement for glycine. The concentration of glycine required for optimal growth was found to be relatively high for an amino acid growth factor. Heart infusion broth was found to be growth inhibitory for spontaneous mutants of one strain able to grow in the absence of arginine, and such mutants reverted readily to arginine dependence accompanied by the ability to grow faster on the complex medium. Growth rates in the defined medium B4 were enhanced by the simultaneous addition of asparagine, glutamate, glutamine, leucine, lysine, histidine, and phenylalanine.  相似文献   

18.
Glutamate neurotoxicity in brain is normally prevented by rapid uptake of glutamate by astrocytes. Increased expression of Cu,Zn superoxide dismutase (SOD1) can increase resistance to cerebral ischemia and other oxidative insults, but the cellular mechanisms by which this occurs are not well established. Here we examine whether increased SOD1 expression can attenuate inhibition of astrocyte glutamate uptake by reactive oxygen species. Primary cortical astrocyte cultures were prepared from transgenic mice that overexpress human SOD1 and from nontransgenic littermate controls. Glutamate uptake was assessed after exposure of these cultures to xanthine oxidase plus hypoxanthine, an extracellular superoxide generating system, or to menadione, which generates superoxide in the cytosol. These treatments produced dose-dependent reductions in astrocyte glutamate uptake, and the reductions were significantly attenuated in the SOD1 transgenic astrocytes. A specific effect of reactive oxygen species on glutamate transporters was suggested by the much smaller inhibitory effects of xanthine oxidase/hypoxanthine and menadione on GABA uptake than on glutamate uptake. These findings suggest that the cerebroprotective effects of increased SOD1 expression during cerebral ischemia-reperfusion could be mediated in part by astrocyte glutamate transport.  相似文献   

19.
Rat posterior eyecups containing the retina were prepared, loaded with [3H]glycine and superfused in order to determine its release originated from glycinergic amacrine cells and/or glial cells. Deprivation of oxygen and glucose from the Krebs-bicarbonate buffer used for superfusion evoked a marked increase of [3H]glycine release, an effect that was found to be external Ca2+-independent. Whereas oxygen and glucose deprivation increased [3H]glycine release, its uptake was reduced suggesting that energy deficiency shifts glycine transporter type-1 operation from normal to reverse mode. The increased release of [3H]glycine evoked by oxygen and glucose deprivation was suspended by addition of the non-competitive glycine transporter type-1 inhibitor NFPS and the competitive inhibitor ACPPB further suggesting the involvement of this transporter in the mediation of [3H]glycine release. Oxygen and glucose deprivation also evoked [3H]glutamate release from rat retina and the concomitantly occurring release of the NMDA receptor agonist glutamate and the coagonist glycine makes NMDA receptor pathological overstimulation possible in hypoxic conditions. [3H]Glutamate release was suspended by addition of the excitatory amino acid transporter inhibitor TBOA. Sarcosine, a substrate inhibitor of glycine transporter type-1, also increased [3H]glycine release probably by heteroexchange shifting transporter operation into reverse mode. This effect of sarcosine was also external Ca2+-independent and could be suspended by NFPS. Energy deficiency in retina induced by ouabain, an inhibitor of the Na+–K+-dependent ATPase, and by rotenone, a mitochondrial complex I inhibitor added with the glycolytic inhibitor 2-deoxy-d-glucose, led to increase of retinal [3H]glycine efflux. These effects of ouabain and rotenone/2-deoxy-d-glucose could also be blocked by NFPS pointed to the preferential reverse mode operation of glycine transporter type-1 as a consequence of impaired cellular energy homeostasis. Immunohistochemical studies revealed that glycine transporter type-1, of which reverse mode operation assures [3H]glycine release, is expressed in amacrine cells in the inner nuclear and plexiform layers of the retina and also in Müller macroglia cells. We conclude that disruption of the balanced normal/reverse mode operation of glycine transporter type-1 is likely a significant factor contributing to neurotoxic processes of the retina. The possibility to inhibit glycine transporter type-1 mediated glycine efflux by drugs more potently than glycine uptake might offer some therapeutic potential for the treatment of various neurodegenerative disorders of the retina.  相似文献   

20.
Abstract— Spermidine and spermine are taken up into mouse cerebral hemisphere slices by active transport and can be accumulated well above the medium concentration. The uptake process shows saturation kinetics and resembles that for amino acid uptake in that it is sensitive to temperature and inhibited by cyanide, 2,4-dinitrophenol or by the absence of glucose from the medium. However, at low initial medium concentrations spermine is taken up by a process which is insensitive to metabolic inhibitors or to temperature. It is suggested that either physical binding to a cellular constituent or exchange transport may account for this uptake. Ouabain does not inhibit polyamine uptake. Spermidine or spermine uptake is inhibited by cadaverine and putrescine. Spermine is the most potent inhibitor of spermidine uptake and vice-versa. Polyamine uptake differs from that of amino acids in that it is increased by a reduction in medium sodium or calcium content and decreased by an increase in medium potassium content. Recently taken up spermine undergoes heteroexchange with spermidine and homoexchange with recently entered spermine. Spermidine undergoes neither heteroexchange with spermine nor homoexchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号