首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
The stilbene disulfonic acids 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid and, 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid bound the variable-1 immunoglobulin-like domain of CD4 on JM cells. The interaction blocked the binding of the anti-CD4 monoclonal antibody OKT4A and the envelope glycoprotein gp120 of the human immunodeficiency virus type-1 (HIV-1). DIDS inhibited the acute infection of CD4+ cells by HIV-1 with a potency (IC50 approximately 30 microM) similar to that which blocked gp120 binding (IC50 approximately 20 microM) to the cellular antigen. Pretreating uninfected CD4+ C8166 cells with DIDS blocked their fusion with chronically infected gp120+ cells. DIDS covalently and selectively modified lysine 90 of soluble CD4 and abolished the gp120-binding and antiviral properties of the recombinant protein. When added to cells productively infected with HIV-1, DIDS blocked virus growth and cleared cultures of syncytia without inhibiting cellular proliferation. The stilbene disulfonic acids are a novel class of site-specific CD4 antagonists that block multiple CD4-dependent events associated with acute and established HIV-1 infections.  相似文献   

2.
X B Tang  J R Casey 《Biochemistry》1999,38(44):14565-14572
AE1, the chloride/bicarbonate anion exchanger of the erythrocyte plasma membrane, is highly sensitive to inhibition by stilbene disulfonate compounds such as DIDS (4,4'-diisothiocyanostilbene-2, 2'-disulfonate) and DNDS (4,4'-dinitrostilbene-2,2'-disulfonate). Stilbene disulfonates recruit the anion binding site to an outward-facing conformation. We sought to identify the regions of AE1 that undergo conformational changes upon noncovalent binding of DNDS. Since conformational changes induced by stilbene disulfonate binding cause anion transport inhibition, identification of the DNDS binding regions may localize the substrate binding region of the protein. Cysteine residues were introduced into 27 sites in the extracellular loop regions of an otherwise cysteineless form of AE1, called AE1C(-). The ability to label these residues with biotin maleimide [3-(N-maleimidylpropionyl)biocytin] was then measured in the absence and presence of DNDS. DNDS reduced the ability to label residues in the regions around G565, S643-M663, and S731-S742. We interpret these regions either as (i) part of the DNDS binding site or (ii) distal to the binding site but undergoing a conformational change that sequesters the region from accessibility to biotin maleimide. DNDS alters the conformation of residues outside the plane of the bilayer since the S643-M663 region was previously shown to be extramembranous. Upon binding DNDS, AE1 undergoes conformational changes that can be detected in extracellular loops at least 20 residues away from the hydrophobic core of the lipid bilayer. We conclude that the TM7-10 region of AE1 is central to the stilbene disulfonate and substrate binding region of AE1.  相似文献   

3.
The role of plasma membrane Cl(-)-HCO-3-exchange in regulating intracellular pH (pHi) was examined in Madin-Darby canine kidney cell monolayers. In cells bathed in 25 mM HCO-3, pH 7.4, steady state pHi was 7.10 +/- 0.03 (n = 14) measured with the fluorescent pH probe 2',7'-biscarboxyethyl-5,6-carboxyfluorescein. Following acute alkaline loading, pHi recovered exponentially in approximately 4 min. The recovery rate was significantly decreased by Cl- or HCO-3 removal and in the presence of 50 microM 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS). Na+ removal or 10(-3) M amiloride did not inhibit the pHi recovery rate after an acute alkaline load. Following acute intracellular acidification, the pHi recovery rate was significantly inhibited by 10(-3) M amiloride but was not altered by Cl- removal or 50 microM DIDS. At an extracellular pH (pHo) of 7.4, pHi remained unchanged when the cells were bathed in either Cl- free media, HCO-3 free media, or in the presence of 50 microM DIDS. As pHo was increased to 8.0, steady state pHi was significantly greater than control in Cl(-)-free media and in the presence of 50 microM DIDS. It is concluded that Madin-Darby canine kidney cells possess a Na+-independent Cl(-)-HCO-3 exchanger with a Km for external Cl- of approximately 6 mM. The exchanger plays an important role in pHi regulation following an elevation of pHi above approximately 7.1. Recovery of pHi following intracellular acidification is mediated by the Na+/H+ antiporter and not the anion exchanger.  相似文献   

4.
Block of a sarcoplasmic reticulum anion channel (SCl channel) by disulfonic stilbene derivatives [DIDS, dibenzamidostilbene-2,2'-disulfonic acid (DBDS), and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS)] was investigated in planar bilayers using SO4(2-) as the conducting ion. All molecules caused reversible voltage-dependent channel block when applied to either side of the membrane. DIDS also produced nonreversible channel block from both sides within 1-3 min. Reversible inhibition was associated with a decrease in channel open probability and mean open duration but not with any change in channel conductance. The half inhibitory concentration for cis- and trans-inhibition had voltage dependencies with minima of 190 nM and 33 microM for DBDS and 3.4 and 55 microM for DNDS. Our data supports a permeant blocker mechanism, in which stilbenes block SCl channels by lodging in the permeation pathway, where they may dissociate to either side of the membrane and thus permeate the channel. The stilbenes acted as open channel blockers where the binding of a single molecule occludes the channel. DBDS and DNDS, from opposite sides of the membrane, competed for common sites on the channel. Dissociation rates exhibited biphasic voltage dependence, indicative of two dissociation processes associated with ion movement in opposite directions within the trans-membrane electric field. The kinetics of DNDS and DBDS inhibition predict that there are two stilbene sites in the channel that are separated by 14-24 A and that the pore constriction is approximately 10 A in diameter.  相似文献   

5.
The anion transporter from human red blood cells, band 3, has been expressed in Xenopus laevis frog oocytes microinjected with mRNA prepared from the cDNA clone. About 10% of the protein is present at the plasma membrane as determined by immunoprecipitation of covalently bound 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene (DIDS) with anti-DIDS antibody. The expressed band 3 transport chloride at a rate comparable to that in erythrocytes. Transport of chloride is inhibited by stilbene disulfonates, niflumic acid, and dipyridamole at concentrations similar to those that inhibit transport in red blood cells: DIDS and 4,4'-dinitro-2,2'-stilbene disulfonate inhibit chloride uptake with Kiapp of 34 nM and 2.5 microM, respectively. Lysine 539 has been tentatively identified as the site of stilbene disulfonate binding. Site-directed mutagenesis of this lysine to five different amino acids has no effect on transport. Inhibition by stilbene disulfonates or their covalent binding was not affected when Lys-539 was substituted by Gln, Pro, Leu, or His. However, substitution by Ala resulted in weaker inhibition and covalent binding. These results indicate that lysine 539 is not part of the anion transport site and that it is not essential for stilbene disulfonate binding and inhibition.  相似文献   

6.
Na/HCO(3) cotransporters (NBCs) are important regulators of intracellular pH (pH(i) in a variety of organ systems where acid-base status is critical for tissue function. To characterize the pharmacology of NBCs in more detail, we used the two-electrode voltage-clamp technique to examine the effect of previously identified inhibitors of anion exchanger 1 (AE1) on the activity of rat NBCe1-A expressed in Xenopus laevis oocytes. NBC-expressing oocytes voltage-clamped at -60 mV and exposed to a 5% CO(2)/33 mM HCO(3)(-) solution displayed NBC-mediated outward currents that were inhibited by either niflumic acid or one of the two bis-oxonol dyes diBA(3)C4 and diBA(5)C4. NBCe1-A was less sensitive to niflumic acid (apparent K(i) of 100 microM) than 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS, apparent K(i) of 36 microM) but more sensitive to the diBAC dyes (apparent K(i) of approximately 10 microM). Based on current-voltage relationships, the diBAC dyes inhibited HCO(3)(-) -induced NBCe1-mediated inward currents more so than outward currents. NBCe1 sensitivity to the dyes was (1) lower in the presence of 40 microM DIDS, (2) unaffected by changes in external HCO(3)(-) concentration and (3) only modestly higher at an external Na(+) concentration of 5, but not 15 or 33, mM. Therefore, the diBAC dyes compete with DIDS but not appreciably with Na(+) or HCO(3)(-) for binding. The mechanism of diBAC inhibition of NBCe1 appears similar to that previously reported for AE1.  相似文献   

7.
Activation of skeletal muscle ryanodine receptors (RyRs) by suramin and disulfonic stilbene derivatives (Diisothiocyanostilbene-2',2'-disulfonic acid (DIDS), 4,4'-dibenzamidostilbene-2,2'-disulfonic acid (DBDS),and 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS)) was investigated using planar bilayers. One reversible and two nonreversible mechanisms were identified. K(a) for reversible activation (approximately 100 micro M) depended on cytoplasmic [Ca(2+)] and the bilayer composition. Replacement of neutral lipids by negative phosphatidylserine increased K(a) fourfold, suggesting that reversible binding sites are near the bilayer surface. Suramin and the stilbene derivatives adsorbed to neutral bilayers with maximal mole fractions between 1-8% and with affinities approximately 100 micro M but did not adsorb to negative lipids. DIDS activated RyRs by two nonreversible mechanisms, distinguishable by their disparate DIDS binding rates (10(5) and 60 M(-1) s(-1)) and actions. Both mechanisms activated RyRs via several jumps in open probability, indicating several DIDS binding events. The fast and slow mechanisms are independent of each other, the reversible mechanism and ATP binding. The fast mechanism confers DIDS sensitivity approximately 1000-fold greater than previously reported, increases Ca(2+) activation and increases K(i) for Ca(2+)/Mg(2+) inhibition 10-fold. The slow mechanism activates RyRs in the absence of Ca(2+) and ATP, increases ATP activation without altering K(a), and slightly increases activity at pH < 6.5. These findings explain how different types of DIDS activation are observed under different conditions.  相似文献   

8.
Stimulation of the CD3-T cell antigen receptor complex on T lymphocytes results in a rapid rise in intracellular calcium from both intra- and extracellular sources. The former is thought to be released from the endoplasmic reticulum in response to inositol trisphosphate, while the latter enters the cells through a membrane potential-sensitive transporter (Oettgen, H. C., Terhorst, C., Cantley, L. C., and Rosoff, P. M. (1985) Cell 40, 583-590). In this report we show that the stilbene disulfonate, DIDS (4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid), inhibited the ability of monoclonal anti-CD3 complex antibodies to stimulate an influx of calcium in the human T lymphocyte cell line, Jurkat. DIDS had no effect on either antibody binding to the receptor or receptor-stimulated phosphatidylinositol turnover. The Ki was approximately 25 microM in the presence of extracellular Cl- and 10 microM when labeling was performed in the absence of Cl-, suggesting that DIDS was competing with Cl- for binding to the cell membrane. The reduced form of DIDS, dihydroDIDS, was only 50% as effective as DIDS itself, and the monoisothiocyanate stilbene, 4-acetamido-4'-isothiocyantostilbene-2,2'-disulfonic acid, was totally ineffective, even to concentrations of 0.750 mM. Removal of extracellular Cl- also inhibited the antibody-stimulated influx of calcium. These data suggest that the function of the CD3-T cell receptor-activated calcium channel/transporter may be dependent on or regulated by extracellular Cl-.  相似文献   

9.
Net K and Cl effluxes induced by valinomycin or by gramicidin have been determined directly at varied external K, denoted by [K]o, in the presence and absence of the anion transport inhibitors DIDS (4,4'-diiso- thiocyano-2,2'-disulfonic acid stilbene), and its less potent analogue SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). The results confirm that pretreatment with 10 microM DIDS, or 100 microM SITS, for 30 min at 23 degrees C inhibits conductive Cl efflux, measured in the continued presence of the inhibitors at 1 mM [K]o, by only 59-67%. This partial inhibition by 10 microM DIDS at 1 mM [K]o remains constant when the concentration of DIDS, or when the temperature or pH during pretreatment with DIDS, are increased. Observations of such partial inhibition previously prompted the postulation of two Cl conductance pathways in human red blood cells: a DIDS-sensitive pathway mediated by capnophorin (band 3 protein), and a DIDS-insensitive pathway. The present experiments demonstrate that at [K]o corresponding to values of EK between -35 and 0 mV the DIDS- insensitive component of net Cl efflux is negligible, being < or = 0.1 muMol/g Hb/min, both with valinomycin (1 microM) and with gramicidin (0.06 microgram/ml). At lower [K]o, where EK is below approximately -35 mV, the DIDS-insensitive fraction of net Cl efflux increases to 2.6 muMol/g Hb/min with valinomycin (1 microM), and to 4.8 muMol/g Hb/min with gramicidin (0.06 microgram/ml). With net fluxes determined from changes in mean cell volume, and with membrane potentials measured from changes in the external pH of unbuffered red cell suspensions, a current-voltage curve for DIDS-insensitive Cl conductance has been deduced. While specific effects of varied [K]o on net Cl efflux are unlikely but cannot strictly be ruled out, the results are consistent with the hypothesis that DIDS-insensitive Cl conductance turns on at an Em of approximately -40 mV.  相似文献   

10.
The involvement of anion channels in the mechanism of the acrosome reaction (AR) was investigated. The AR was induced by Ca2+ or by addition of the Ca2+ ionophore A23187. The occurrence of AR was determined by following the release of acrosin from the cells. In order to investigate the role of anion channels in the AR, several anion-channel inhibitors were tested, mainly DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid). Other blockers, like SITS (4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid), furosemide, probenecid and pyridoxal 5-phosphate, were also tested. We found that DIDS binds covalently to sperm plasma membrane in a time- and concentration-dependent manner. Maximal binding occurs after 2 h with 0.3 mM DIDS. DIDS and SITS inhibit AR in a concentration-dependent manner. The IC50 of DIDS and SITS in the presence of A23187 is 0.15 and 0.22 mM, respectively. Tributyltin chloride (TBTC), an Cl-/OH- exchanger, partially overcomes DIDS inhibition of the AR. HCO3- is required for a maximal acrosin release and Ca(2+)-uptake, in the presence or absence of A23187. It is known that HCO3- activates adenylate cyclase and therefore, increases the intracellular level of cAMP. The inhibition of the AR by DIDS decreases from 95 to 50% when (dibutyryl cyclic AMP (dbcAMP) was added, i.e., HCO3- is no longer required while elevating the level of cAMP in an alternative way. Moreover, we show that the stimulatory effect of HCO3- on Ca(2+)-uptake is completely inhibited by DIDS. We conclude that DIDS inhibits AR by blocking anion channels, including those that transport HCO3- into the cell.  相似文献   

11.
12.
Effects of arsenite, arsenate and vanadate on human erythrocyte membrane have been assessed according to their routes passing through the membrane, their binding modes to the membrane and their influences on membrane proteins and lipids. The uptake of arsenate (1.0 mM) by cells approached a limit with intracellular arsenic of about 0.2 mM in 5 h, and was strongly inhibited (approximately 95%) by 4,4'-diisothiocyano-2,2'-disulfonic stilbene (DIDS), indicating that arsenate, similar to vanadate, passed across the membrane through the anion exchange protein, band 3. Arsenite (1.0 mM) influx reached a maximum of about 0.4 mM in 30 min, and was not inhibited by DIDS. The transformed species of arsenite bound to the membrane from cytosol. In contrast, arsenate bound rapidly from the outside, followed by releasing and re-binding. The binding to the membrane via sulfhydryl was indicated by the decrease of the sulfhydryl level of membrane proteins. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate (SDS-PAGE) analysis revealed that the proteins, bands 1-3, were among the targets of arsenite, arsenate and vanadate. Their binding to the membrane also induced changes in the fluidity of membrane lipids and in the negative charge density in the outer surface of the membrane.  相似文献   

13.
The initial rate of Zn2+ uptake in human red cells was measured by atomic absorption. A very important fraction of Zn2+ uptake was inhibited by DIDS with IC50 = 0.3 microM (and by furosemide and bumetanide with IC50 of 200 and 500 microM, respectively). DIDS-sensitive Zn2+ uptake exhibited the following properties: 1) It required the simultaneous presence of both external HCO3- and Cl-. 2) In Cl- containing media, it was strongly stimulated by external HCO3- following a sigmoidal (S-shaped) and saturable function, which was fitted by a Hanes equation, with n = 2 and an apparent dissociation constant (for external HCO3-) of 5.3 +/- 0.9 mM (mean +/- SD of four experiments). The maximal rate of Zn2+ uptake at saturating HCO3- concentrations was 50.7 +/- 4.8 mmol (liter cells x h)-1. 3) In HCO3- containing media, it was strongly stimulated by external Cl- following a Michaelis-like equation with an apparent dissociation constant (for external Cl-) of 88 +/- 11 mM (mean +/- SD of three experiments). 4) Bicarbonate-stimulated Zn2+ uptake was inhibited by physiological concentrations of phosphate (sulfate was a much less potent inhibitor than phosphate). A kinetic analysis of the data strongly suggested that zinc was transported by the anion carrier in the form of the monovalent anion complex: [Zn(HCO3)2Cl]-.  相似文献   

14.
The hydrolysis of p-nitrophenyl phosphate catalyzed by the erythrocyte membrane Ca2+-ATPase is stimulated by low concentrations of the compound 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a classic inhibitor of anion transport. Enhancement of the phosphatase activity varies from 2- to 6-fold, depending on the Ca2+ and calmodulin concentrations used. Maximum stimulation of the pNPPase activity in ghosts is reached at 4-5 microM DIDS. Under the same conditions, but with ATP rather than pNPP as the substrate, the Ca2+-ATPase activity is strongly inhibited. Activation of pNPP hydrolysis by DIDS is equally effective for both ghosts and purified enzyme, and therefore is independent of its effect as an anion transport inhibitor. Binding of the activator does not change the Ca2+ dependence of the pNPPase activity. Stimulation is partially additive to the activation of the pNPPase activity elicited by calmodulin and appears to involve a strong affinity binding or covalent binding to sulfhydryl groups of the enzyme, since activation is reversed by addition of dithiothreitol but not by washing. The degree of activation of pNPP hydrolysis is greater at alkaline pH values. DIDS decreases the apparent affinity of the enzyme for pNPP whether in the presence of Ca2+ alone or Ca2+ and calmodulin or in the absence of Ca2+ (with 5 microM DIDS the observed Km shifts from 4.8 +/- 1.4 to 10.1 +/- 2.6, from 3.8 +/- 0.4 to 7.0 +/- 0.8, and from 9.3 +/- 0.7 to 15.5 +/- 1.1 mM, respectively). However, the pNPPase rate is always increased (as above, from 3.6 +/- 0.6 to 11.2 +/- 1.7, from 4.4 +/- 0.5 to 11.4 +/- 0.9, and from 2.6 +/- 0.6 to 18.6 +/- 3.9 nmol mg-1 min-1, in the presence of Ca2+ alone or Ca2+ and calmodulin or in the absence of Ca2+, respectively). ATP inhibits the pNPPase activity in the absence of Ca2+, both in the presence and in the absence of DIDS. Therefore, kinetic evidence indicates that DIDS does more than shift the enzyme to the E2 conformation. We propose that the transition from E2 to E1 is decreased and a new enzyme conformer, denoted E2*, is accumulated in the presence of DIDS.  相似文献   

15.
We have previously defined in the NH2-terminal cytoplasmic domain of the mouse AE2/SLC4A2 anion exchanger a critical role for the highly conserved amino acids (aa) 336-347 in determining wild-type pH sensitivity of anion transport. We have now engineered hexa-Ala ((A)6) and individual amino acid substitutions to investigate the importance to pH-dependent regulation of AE2 activity of the larger surrounding region of aa 312-578. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)-sensitive 36Cl- efflux from AE2-expressing Xenopus oocytes was monitored during changes in pHi or pHo in HEPES-buffered and in 5% CO2/HCO3- -buffered conditions. Wild-type AE2-mediated 36Cl- efflux was profoundly inhibited at low pHo, with a pHo(50) value = 6.75 +/- 0.05 and was stimulated up to 10-fold by intracellular alkalinization. Individual mutation of several amino acid residues at non-contiguous sites preceding or following the conserved sequence aa 336-347 attenuated pHi and/or pHo sensitivity of 36Cl- efflux. The largest attenuation of pH sensitivity occurred with the AE2 mutant (A)6357-362. This effect was phenocopied by AE2 H360E, suggesting a crucial role for His360. Homology modeling of the three-dimensional structure of the AE2 NH2-terminal cytoplasmic domain (based on the structure of the corresponding region of human AE1) predicts that those residues shown by mutagenesis to be functionally important define at least one localized surface region necessary for regulation of AE2 activity by pH.  相似文献   

16.
A systematic study was made of the action of 4-acet-amido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) on active Ca2+ transport of human erythrocytes. Pumping activity was estimated in inside-out vesicles (IOV's) by means of Ca2+-selective electrodes or use of tracer 45Ca2+. The stilbenes exhibited an approximately equal inhibitory potency and their action could be overcome by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) at low but not at high stilbene concentrations. In the absence of DIDS, Ca2+ transport was not affected upon addition of valinomycin, but it was appreciably reduced when vesicles were preincubated with low DIDS concentrations. Such an effect was strictly dependent on the external K+ concentration and it was abolished when valinomycin was added together with FCCP. Similar results were obtained using IOV's prepared from intact cells which had been previously exposed to the stilbene. The findings clearly demonstrate the presence in human red cells of a partially electrogenic Ca2+ pump, exchanging one Ca2+ ion for one proton.  相似文献   

17.
Upon modification of the reconstituted aspartate/glutamate carrier by various amino acid-reactive chemicals a functional lysine residue at the exofacial binding site was identified. The inactivation of transport function by the lysine-specific reagents pyridoxal phosphate (PLP, IC50 400 microM) and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (SITS, IC50 300 microM) could specifically be suppressed by the substrates aspartate and glutamate; a 50% substrate protection was observed at half-saturation of the external binding site. The same held true for 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, IC50 500 microM) and diethyl pyrocarbonate (DEPC, IC50 20 microM), two reagents known to modify carboxylic or histidinyl side-chains, respectively. EDC, however, turned out to catalyze an acylation of the active site lysine by activating carboxyls that had to be present in the incubation medium. This special mechanism, which was proven by protein labelling using EDC/[14C]succinate, necessitates a lysine side-chain of high reactivity and low pK, since the modification had to occur at pH less than or equal to 6.5, i.e. not too far from the pK of the carboxyl to be activated. All reagents applied, additionally including 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS, IC50 10 microM), were effective at this pH. Competition experiments revealed interaction of EDC, PLP, SITS and probably DIDS at the same active site lysine. For DEPC a lysine modification could not be ruled out. Yet, a model comprising a histidine juxtaposed to the lysine seems to be appropriate.  相似文献   

18.
We previously reported that, in a HCO3(-)-free medium, cytoplasmic pH (pHi) of hamster fibroblasts (CCL39) is primarily regulated by an amiloride-sensitive Na+/H+ antiport (L'Allemain, G., Paris, S., and Pouysségur, J. (1984) J. Biol. Chem. 259, 5809-5815). Here we demonstrate the existence of an additional pHi-regulating mechanism in CCL39 cells, namely a Na+-dependent HCO3-/Cl- exchange. Evidence for this system is based on 36Cl- influx studies and on pHi measurements in PS120, a CCL39-derived mutant lacking the Na+/H+ antiport activity. 36Cl- influx rate is a saturable function of external [Cl-] (apparent Km approximately equal to 7 mM), is competitively inhibited by external HCO3- (KI approximately equal to 3 mM), and by stilbene derivatives (KI approximately equal to 20 microM for 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). Measurements of pHi recovery after an acute acid load indicate that PS120 cells possess an acid-extruding mechanism dependent on external HCO3-, which is inhibited by stilbene derivatives and requires external Na+. Since 22Na+ influx is stimulated upon addition of HCO3- to acid-loaded cells and this effect is completely abolished by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, we conclude that Na+ is co-transported with HCO3-, in exchange for intracellular Cl-. In a HCO3(-)-containing medium, this pHi-regulating mechanism appears to have two essential physiological functions for the Na+/H+ antiport-deficient mutant: protection of the cells against excessive cytoplasmic acidification and establishment of a steady-state pHi permissive for growth, at neutral or slightly acidic pHo values (6.6-7.2).  相似文献   

19.
The disulfonic stilbene (4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene) is found to be more potent than acetazolamide as an anion transport inhibitor in the turtle bladder, but less potent than acetazolamide as a carbonic anhydrase inhibitor. The anion-dependent (HCO-3,Cl-) moiety of the short-circuiting current is eliminated by 4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene, but only after its addition to the serosal bathing fluid. Whereas 4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene has no effect on Na+ transport across the bladder, it is more potent than ouabain as an inhibitor of microsomal (Na+ + K+)-ATPase of both turtle bladder and eel electric organ.  相似文献   

20.
Knauf PA  Law FY  Leung TW  Atherton SJ 《Biochemistry》2004,43(38):11917-11931
Previous fluorescence resonance energy transfer (FRET) measurements, using BIDS (4-benzamido-4'-isothiocyanostilbene-2,2'-disulfonate) as a label for the disulfonic stilbene site and FM (fluorescein-5-maleimide) as a label for the cytoplasmic SH groups on band 3 (AE1), combined with data showing that the cytoplasmic SH groups lie about 40 A from the cytoplasmic surface of the lipid bilayer, would place the BIDS sites very near the membrane's inner surface, a location that seems to be inconsistent with current models of AE1 structure and mechanism. We reinvestigated the BIDS-FM distance, using laser single photon counting techniques as well as steady-state fluorescence of AE1, in its native membrane environment. Both techniques agree that there is very little energy transfer from BIDS to FM. The mean energy transfer (E), based on three-exponential fits to the fluorescence decay data, is 2.5 +/- 0.7% (SEM, N = 12). Steady-state fluorescence measurements also indicate <3% energy transfer from BIDS to FM. These data indicate that the BIDS sites are probably over 63 A from the cytoplasmic SH groups, placing them near the middle or the external half of the lipid bilayer. This relocation of the BIDS sites fits with other evidence that the disulfonic stilbene sites are located farther toward the external membrane surface than Glu-681, a residue near the inner membrane surface whose modification affects the pH dependence and anion selectivity of band 3. The involvement of two relatively distant parts of the AE1 protein in transport function suggests that the transport mechanism requires coordinated large-scale conformational changes in the band 3 protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号