首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background and AimsCold stress in rice (Oryza sativa) plants at the reproductive stage prevents normal anther development and causes pollen sterility. Tapetum hypertrophy in anthers has been associated with pollen sterility in response to cold at the booting stage. Here, we re-examined whether the relationships between anther abnormality and pollen sterility caused by cold stress at the booting stage in rice can be explained by a monovalent factor such as tapetum hypertrophy.MethodsAfter exposing plants to a 4-d cold treatment at the booting stage, we collected and processed anthers for transverse sectioning immediately and at the flowering stage. We anatomically evaluated the effect of cold treatment on anther internal morphologies, pollen fertilities and pollen numbers in the 13 cultivars with various cold sensitivities.Key ResultsWe observed four types of morphological anther abnormalities at each stage. Pollen sterility was positively correlated with the frequency of undeveloped locules, but not with tapetum hypertrophy as commonly believed. In cold-sensitive cultivars grown at low temperatures, pollen sterility was more frequent than anther morphological abnormalities, and some lines showed remarkably high pollen sterility without any anther morphological alterations. Most morphological anomalies occurred only in specific areas within large and small locules. Anther length tended to shorten in response to cold treatment and was positively correlated with pollen number. One cultivar showed a considerably reduced pollen number, but fertile pollen grains under cold stress. We propose three possible relationships to explain anther structure and pollen sterility and reduction due to cold stress.ConclusionsThe pollen sterility caused by cold stress at the booting stage was correlated with the frequency of entire locule-related abnormalities, which might represent a phenotypic consequence, but not a direct cause of pollen abortion. Multivalent factors might underlie the complicated relationships between anther abnormality and pollen sterility in rice.  相似文献   

2.
Effect of early cold stress on the maturation of rice anthers   总被引:22,自引:0,他引:22  
Imin N  Kerim T  Rolfe BG  Weinman JJ 《Proteomics》2004,4(7):1873-1882
Male reproductive development in rice (Oryza sativa Linnaeus is very sensitive to various forms of environmental stresses including low temperature. Here, we present our findings on the proteomic analysis of the later developmental consequences of low temperature treatment on rice anthers. Anther proteins at the trinucleate stage, with or without cold treatment for four days at 12 degrees C at the young microspore stage, were extracted, separated by two-dimensional gel electrophoresis (2-DE) and compared. More than 3000 rice anther proteins of cold-sensitive cultivar Doongara plants at the trinucleate stage were resolved on 2-DE gels over a pH range of 4-7 and detected by silver-staining. Seventy protein spots were differentially displayed after four days of cold treatment at the young microspore stage. Of these, 12 protein spots were newly-induced, 47 were up-regulated, and 11 were down-regulated by cold treatment at the early microspore stage. We identified 18 by matrix-assisted laser desorption/ionization mass spectrometry time of flight (MALDI-TOF) analysis. Of the identified proteins, seven were observed as breakdown (cleavage) products by a combination of 2-DE and MALDI-TOF analysis, thus demonstrating for the first time that cold temperature stress at the young microspore stage enhances and induces partial degradation of proteins in the rice anthers at the trinucleate stage.  相似文献   

3.
During maize anther development, somatic locular cells differentiate to support meiosis in the pollen mother cells. Meiosis is an important event during anther growth and is essential for plant fertility as pollen contains the haploid sperm. A subset of maize male sterile mutants exhibit meiotic failure, including ms8 (male sterile 8) in which meiocytes arrest as dyads and the locular somatic cells exhibit multiple defects. Systematic proteomic profiles were analysed in biological triplicates plus technical triplicates comparing ms8 anthers with fertile sibling samples at both the premeiotic and meiotic stages; proteins from 3.5 to 20 kDa were fractionated by 1‐D PAGE, cleaved with Lys‐C and then sequenced using a LTQ Orbitrap Velos MS paradigm. Three hundred and 59proteins were identified with two or more assigned peptides in which each of those peptides were counted at least two or more times (0.4% peptide false discovery rate (FDR) and 0.2% protein FDR); 2761 proteins were identified with one or more assigned peptides (0.4% peptide FDR and 7.6% protein FDR). Stage‐specific protein expression provides candidate stage markers for early anther development, and proteins specifically expressed in fertile compared to sterile anthers provide important clues about the regulation of meiosis. 49% of the proteins detected by this study are new to an independent whole anther proteome, and many small proteins missed by automated maize genome annotation were validated; these outcomes indicate the value of focusing on low molecular weight proteins. The roles of distinctive expressed proteins and methods for mass spectrometry of low molecular weight proteins are discussed.  相似文献   

4.
Cold temperatures cause pollen sterility and large reductions in grain yield in temperate rice growing regions of the world. Induction of pollen sterility by cold involves a disruption of sugar transport in anthers, caused by the cold-induced repression of the apoplastic sugar transport pathway in the tapetum. Here we demonstrate that the phytohormone ABA is a potential signal for cold-induced pollen sterility (CIPS). Cold treatment of the cold-sensitive cultivar Doongara resulted in increased anther ABA levels. Exogenous ABA treatment at the young microspore stage induced pollen sterility and affected cell wall invertase and monosaccharide transporter gene expression in a way similar to cold treatment. In the cold-tolerant cultivar R31, ABA levels were significantly lower under normal circumstances and remained low after cold treatment. The differences in endogenous ABA levels in Doongara and R31 correlated with differences in expression of the ABA biosynthetic genes encoding zeaxanthin epoxidase (OSZEP1) and 9-cis-epoxycarotenoid dioxygenase (OSNCED2, OSNCED3) in anthers. The expression of three ABA-8-hydroxylase genes (ABA8OX1, 2 and 3) in R31 anthers was higher under control conditions and was regulated differently by cold compared with Doongara. Our results indicate that the cold tolerance phenotype of R31 is correlated with lower endogenous ABA levels and a different regulation of ABA metabolism.  相似文献   

5.
低温预处理影响水稻花药培养效率的机理初探   总被引:3,自引:0,他引:3  
低温预处理延缓药壁中层和绒毡层的降解,促进表皮层和药室内壁层的发育,延缓花药过氧化物酶同工酶活性的增强。处理期间花药可溶性蛋白质、淀粉酶同工酶潜带发生明显变化。处理期间花药的~3H-TdR渗入和花粉的发育、分裂,表明花粉存在合成和充实活动。绒毡层和花粉间存在囊泡,表皮层和药室内壁层之间存在多泡体的穿壁运动,说明低温处理中药壁向花粉输送雄核发育所需的物质。在进入正常培养初期,经过低温处理的花药药壁仍有表皮层和药室内壁层的发育,多细胞花粉出现提早、数量增加,花粉退化延缓。而未经处理的花药药壁各层均迅速降解,花粉大量退化。  相似文献   

6.
7.
The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance.  相似文献   

8.
Kerim T  Imin N  Weinman JJ  Rolfe BG 《Proteomics》2003,3(5):738-751
We used proteomic analysis to investigate the changing patterns of protein synthesis during pollen development in anthers from rice plants grown under strictly controlled growth conditions. Cytological analysis and external growth measurements such as anther length, auricle distances and days before flowering were used to determine pollen developmental stages. This allowed the collection of synchronous anther materials representing six discrete pollen developmental stages. Proteins were extracted from the anther samples and separated by two-dimensional gel electrophoresis to produce proteome maps. The anther proteome maps of different developmental stages were compared and 150 protein spots, which were changed consistently during development, were analysed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to produce peptide mass fingerprint (PMF) data. Database searches using these PMF data revealed the identities of 40 of the protein spots analyzed. These 40 proteins represent 33 unique gene products. Four protein spots that could not be identified by PMF analysis were analysed by N-terminal microsequencing. Multiple charge-isoforms of vacuolar acid invertase, fructokinase, beta-expansin and profilin were identified. These proteins are closely associated with sugar metabolism, cell elongation and cell expansion, all of which are cell activities that are essential to pollen germination. The existence of multiple isoforms of the same proteins suggests that during the process of pollen development some kind of post-translational modification of these proteins occurs.  相似文献   

9.
Small RNAs including microRNA (miRNA) and small interfering RNA (siRNA) are known as repressors of gene expression. There are many plant proteins involved in small RNA-mediated gene silencing, such as Dicer ribonucleases and RNA-dependent RNA polymerases. However, most of these proteins have been reported to be absent in the late developmental stage of the plant male gamete, pollen. In order to clarify the existence of the small RNAs during maturation of pollen, we cloned and sequenced small RNAs from rice anthers including tricellular pollen. From fifty six candidates of small RNAs, we identified two known miRNAs (miR166 and miR167), eight potential miRNAs, and ten putative heterochromatic siRNAs (hc-siRNAs). RNA gel blot analyses clearly showed that miR166 and miR167 were accumulated in the uninuclear pollen stage of anther development and remained until the tricellular pollen stage. Our cloning and RNA gel blot analyses of small RNAs led us to propose a possible function of small RNA-mediated gene regulation for the development of male gametes in rice.  相似文献   

10.
Wang Z  Liang Y  Li C  Xu Y  Lan L  Zhao D  Chen C  Xu Z  Xue Y  Chong K 《Plant molecular biology》2005,58(5):721-737
In flowering plants, anthers bear male gametophytes whose development is regulated by the elaborate coordination of many genes. In addition, both gibberellic acid (GA3) and jasmonic acid (JA) play important roles in anther development and pollen fertility. To facilitate the analysis of anther development genes and how GA3 and JA regulate anther development, we performed microarray experiments using a 10-K cDNA microarray with probes derived from seedlings, meiotic anthers, mature anthers and GA3- or JA-treated suspension cells of rice. The expression level change of 2155 genes was significantly (by 2-fold or greater) detected in anthers compared with seedlings. Forty-seven genes, representing genes with potential function in cell cycle and cell structure regulation, hormone response, photosynthesis, stress resistance and metabolism, were differentially expressed in meiotic and mature anthers. Moreover, 314 genes responded to either GA3 or JA treatment, and 24 GA3- and 82 JA-responsive genes showed significant changes in expression between meiosis and the mature anther stages. RT-PCR demonstrated that gene y656d05 was not only highly expressed in meiotic anthers but also induced by GA3. Strong RNA signals of y656d05 were detected in pollen mother cells and tapetum in in situ hybridization. Further characterization of these candidate genes can contribute to the understanding of the molecular mechanism of anther development and the involvement of JA and GA3 signals in the control of anther development in rice.  相似文献   

11.
光周期诱导光敏感核不育水稻花药蛋白变化的研究   总被引:2,自引:0,他引:2  
采用双向电脉技术对不同光周期条件下,光敏感核不育水稻(农垦58s)的可育与不育花药蛋白的变化进行分析,发现花粉发育的不同阶段中,不育花药具有四个特异蛋白pI6.2/bMW70KD,pI6.2/MW68KD,pI6.2/MW38KD和pI7.4/MW37KD.对游离组蛋白的分析表明.长日照诱导的不育花药中游离组蛋白的相对百分率均明显低于短日照下的可育花药.据此推测长日照诱导不百花药蛋白质组成和代谢变化.不育花药中游离组蛋白含量低,可能受DNA合成数量少的影响.  相似文献   

12.
钙在高等植物中被称为第二信使,与植物的有性生殖有关。为了研究水稻(Oryza sativa L.)花药中钙的定位与花粉败育的关系,利用焦锑酸钾沉淀法研究了非花粉型细胞质雄性不育系G37A及其保持系G37B花药的发育过程及其细胞中Ca^2+ 的分布变化。研究发现,在2个材料间花药中钙的分布存在大量差异。G37B的可育花药在花粉母细胞时期及二分体时期,很少看到有Ca^2+的沉积;而在单核花粉时期,Ca^2+沉积急速地增加,主要定位在绒毡层细胞、花粉外壁外层及乌氏体的表面;随后花药壁上沉积的Ca^2+减少而花粉的外壁外层仍然有很多Ca^2+沉积物。相反,G37A的不育花药在花粉母细胞时期和二分体时期有大量的Ca^2+沉积在小孢子母细胞和花药壁,中间层和绒毡层特别多。在二分体时期之后,不育花药的Ca^2+沉积减少,特别是绒毡层内切向质膜附近的Ca^2+几乎消失。但是同时期的可育花药中,有大量的Ca^2+沉积在绒毡层。不育花药的Ca^2+沉积在开花几天后消失。根据研究结果推测在不育花药发育早期中更多的钙离子与花粉败育有一定的关系。  相似文献   

13.
Male reproductive development in rice is very sensitive to various forms of environmental stresses including low temperature. A few days of cold treatment (<20 degrees C) at the young microspore stage induce severe pollen sterility and thus large grain yield reductions. To investigate this phenomenon, anther proteins at the early stages of microspore development, with or without cold treatment at 12 degrees C, were extracted, separated by two-dimensional gel electrophoresis, and compared. The cold-sensitive cultivar Doongara and the relatively cold-tolerant cultivar HSC55 were used. The abundance of 37 anther proteins was changed more than 2-fold after 1, 2, and 4 days of cold treatment in cv. Doongara. Among them, one protein was newly induced, 32 protein spots were up-regulated, and four protein spots were down-regulated. Of these 37 protein spots, we identified two anther-specific proteins (putative lipid transfer protein and Osg6B) and a calreticulin that were down-regulated and a cystine synthase, a beta-6 subunit of the 20 S proteasome, an H protein of the glycine cleavage system, cytochrome c oxidase subunit VB, an osmotin protein homologue, a putative 6-phosphogluconolactonase, a putative adenylate kinase, a putative cysteine proteinase inhibitor, ribosomal protein S12E, a caffeoyl-CoA O-methyltransferase, and a monodehydroascorbate reductase that were up-regulated. Identification of these proteins is available upon request. Accumulation of these proteins did not vary greatly after cold treatment in panicles of cv. Doongara or in the anthers of the cv. HSC55. The newly induced protein named Oryza sativa cold-induced anther protein (OsCIA) was identified as an unknown protein. The OsCIA protein was detected in panicles, leaves, and seedling tissues under normal growth conditions. Quantitative real time RT-PCR analysis of OsCIA mRNA expression showed no significant change between low temperature-treated and untreated plants. A possible regulatory role for the newly induced protein is proposed.  相似文献   

14.
15.
16.
Protein lysine acetylation (KAC) is a dynamic and reversible post‐translational modification that has important biological roles in many organisms. Although KAC has been shown to affect reproductive development and meiosis in yeast and animals, similar studies are largely lacking in flowering plants, especially proteome‐scale investigations for particular reproductive stages. Here, we report results from a proteomic investigation to detect the KAC status of the developing rice anthers near the time of meiosis (RAM), providing strong biochemical evidence for roles of many KAC‐affected proteins during anther development and meiosis in rice. We identified a total of 1354 KAC sites in 676 proteins. Among these, 421 acetylated proteins with 629 KAC sites are novel, greatly enriching our knowledge on KAC in flowering plants. Gene Ontology enrichment analysis showed chromatin silencing, protein folding, fatty acid biosynthetic process and response to stress to be over‐represented. In addition, certain potentially specific KAC motifs in RAM were detected. Importantly, 357 rice meiocyte proteins were acetylated; and four proteins genetically identified to be important for rice tapetum and pollen development were acetylated on 14 KAC sites in total. Furthermore, 47 putative secretory proteins were detected to exhibit acetylated status in RAM. Moreover, by comparing our lysine acetylome with the RAM phosphoproteome we obtained previously, we proposed a correlation between KAC and phosphorylation as a potential modulatory mechanism in rice RAM. This study provides the first global survey of KAC in plant reproductive development, making a promising starting point for further functional analysis of KAC during rice anther development and meiosis.  相似文献   

17.
18.
Low temperatures during rice (Oryza sativa L.) pollen development cause pollen sterility and decreased grain yield. We show that the time of highest sensitivity to cold coincides with the time of peak tapetal activity: the transition of the tetrad to early uni-nucleate stage (young microspore, YM stage). Low temperatures at this stage of pollen development result in an accumulation of sucrose in the anthers, accompanied by decreased activity of cell wall bound acid invertase and depletion of starch in mature pollen grains. Expression analysis of two cell wall (OSINV1, 4) and one vacuolar (OSINV2) acid invertase genes showed that OSINV4 is anther-specific and down-regulated by cold treatment. OSINV4 is transiently expressed in the tapetum cell layer at the YM stage, and later from the early binucleate stage in the maturing microspores. The down-regulation of OSINV4 expression in the tapetum at YM may cause a disruption in hexose production and starch formation in the pollen grains. In a cold-tolerant cultivar, OSINV4 expression was not reduced by cold; sucrose did not accumulate in the anthers and starch formation in the pollen grains was not affected.  相似文献   

19.
The most chilling-sensitive stage of rice has been found to be at the onset of microspore release. The microsporocytes produce a wall of callose between the primary cell wall and the plasma membrane, and it has been shown that precise regulation of callose synthesis and degradation in anther is essential for fertile pollen formation. In this study, genes for 10 callose synthases in the rice genome were fully annotated and phylogenetically analyzed. Expression analysis of these genes showed that OsGSL5, an ortholog of microsporogenesis-related AtGSL2, was specifically expressed in anthers, and was notably downregulated by cooling treatment. Gene expression profiles of Rho-type small GTP-binding proteins in rice anther were also analyzed. The mechanisms of callose synthesis in rice pollen formation and its relationships with cool tolerance are discussed.  相似文献   

20.
玉米早期花药蛋白质组和磷酸化蛋白质组分析   总被引:1,自引:0,他引:1  
蛋白质磷酸化修饰是调控其功能的一种重要方式。植物有性生殖过程在农作物产量形成和物种繁衍过程中起着重要作用。作为植物雄性生殖器官的花药,其正常生长发育对于保证形成功能性配子(花粉)以及完成双受精过程至关重要。本研究以重要农作物玉米(B73)为材料,利用Nano UHPLC-MS/MS质谱技术对玉米早期发育的花药在蛋白质组和磷酸化蛋白质组水平进行全面分析,以探究玉米花药发育过程中的蛋白调控网络和磷酸化修饰调控网络。在蛋白质组学分析中,共鉴定到了3 016个多肽,匹配到1 032个蛋白质上。通过Map Man分析,预测到了一些和花药发育相关的蛋白质,例如受体激酶(GRMZM2G082823_P01、GRMZM5G805485_P01等)。另外,在磷酸化蛋白质组学研究中,通过对Ti O2亲和层析富集到的磷酸化多肽进行质谱分析,检测到了257个磷酸化多肽,匹配到210个蛋白质上。我们的数据揭示了玉米花药发育过程中的223个磷酸化位点。与已发现的玉米中的86个磷酸化蛋白质(植物蛋白磷酸化数据库(P3DB):http://www.p3db.org/organism.php)相比,其中203个磷酸化蛋白和218个磷酸化位点为首次揭示。进一步生物信息学分析表明:磷酸化在14-3-3蛋白质、激酶、磷酸酶、转录因子、细胞周期和染色质结构相关的蛋白质介导的玉米早期花药发育过程中起着重要的调控作用。总之,本研究首次在蛋白质组学和磷酸化蛋白质组学水平研究了玉米早期花药发育的蛋白质调控网络,不仅丰富了玉米蛋白质和磷酸化修饰蛋白质数据库,并为利用遗传学和生物化学手段深入研究玉米花药发育的分子调控机理提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号